
To Make Sense of Procedurally Generated Dungeons
Simon Tolinsson
Alexander Flodhag

simontolinsson@gmail.com
alexander_flodhag@hotmail.com

Malmö University

Alberto Alvarez
Jose Font

alberto.alvarez@mau.se
jose.font@mau.se

Department of Computer Science and Media Technology,
Malmö University

ABSTRACT
With the growth of procedural content generation in game develop-
ment, there is a need for a viable generative method to give context
and make sense of the content within game space. We propose pro-
cedural narrative as context through objectives, as a useful means
to structure content in games. In this paper, we present and de-
scribe an artifact developed as a sub-system to the Evolutionary
Dungeon Designer (EDD) that procedurally generates objectives
for the dungeons created with the tool. The quality of the content
within rooms is used to generate objectives, and together with the
distributions and design of the dungeon, main and side objectives
are formed to maximize the usage of game space and create a proper
context.

CCS CONCEPTS
• Theory of computation → Evolutionary algorithms; • Ap-
plied computing → Computer games; • Software and its en-
gineering→ Interactive games.

KEYWORDS
Procedural Content Generation, Mixed-Initiative Co-Creativity

ACM Reference Format:
Simon Tolinsson, Alexander Flodhag, Alberto Alvarez, and Jose Font. 2020.
To Make Sense of Procedurally Generated Dungeons. In Extended Abstracts
of the 2020 Annual Symposium on Computer-Human Interaction in Play (CHI
PLAY ’20 EA), November 2–4, 2020, Virtual Event, Canada. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3383668.3419890

1 INTRODUCTION
Procedural content generation (PCG) has found itself in the spot-
light within game development with games such as Minecraft [17],
No Man’s Sky [13], and Spelunky [9], improving replayability, re-
ducing the developers’ workload, and fostering the designers’ cre-
ativity [4, 12, 18]. However, some type of narrative or context is
required to make sense of the PCG content when implemented into
the game space [8]. An example of narrative is objectives. If there is
an objective within the content, for example, finding a sacred gem

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI PLAY ’20 EA, November 2–4, 2020, Virtual Event, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7587-0/20/11. . . $15.00
https://doi.org/10.1145/3383668.3419890

Figure 1: The main components in EDD. (a) A basic room,
(b) different placeable tiles, (c) micro patterns and (d) meso
patterns [3].

in a dangerous dungeon, then that creates interaction between the
user and the content, which creates the needed context.

The Evolutionary Dungeon Designer (EDD) is a mixed-initiative
design tool used for creating and generating dungeons [5]. This
paper gathers the first step towards implementing a sub-system
for EDD, which procedurally generates objectives for dungeons.
The current sub-system gathers and continuously adapts to the de-
signer’s dungeon to place different objectives based on the rooms’
content. Through this, the designer focuses on creating the dungeon
while seamlessly, they are provided with the different generated ob-
jectives. We evaluate the artifact’s utility, quality, and efficacy based
on how well the objectives represent the layout of the dungeon
with experimental scenarios.

2 RELATEDWORK
2.1 The Evolutionary Dungeon Designer
EDD is a mixed-initiative tool for designers to create dungeons as a
set of interconnected tile-based rooms [5]. Each tile in a room can be
modified to represent different types of paths, obstacles or rewards,
and are used to form inventorial (Fig. 1.b) or spatial (Fig. 1.c) micro
patterns. These micro patterns can be further combined to form
meso patterns (Fig. 1.d) such as treasure or guarded rooms. Fur-
thermore, as the designer creates rooms, EDD dynamically offers
procedurally generated room suggestions through the Interactive
Constrained MAP-Elites, using such patterns as evaluation and
continuously adapting to the designer’s design [6].

2.2 Procedural Generation of Game Narrative
Interactivity and narrative have conflicting demands [14]. With
narrative, the author decides the direction of the flow, while inter-
activity turns to the player for motive power. Straying from the

https://doi.org/10.1145/3383668.3419890
https://doi.org/10.1145/3383668.3419890

author’s path may make for a less satisfying story, but restricting
the player’s freedom of actions will have the same effect on the
game. But game designers are not only storytellers, but they also
sculpt and design game worlds and spaces.

Generated content needs context in the game space. A lack of
context may negatively affect user experience, with the content
being perceived as empty or meaningless [8]. The limitations of
a story are related to the quest combinations available. By under-
standing the structure of quests, we can also understand the limits
and potential of these kinds of games and how to create rich, open
game worlds and tell interesting stories within them [1].

The common factor with objectives in games is to provide the
player a reason to further progress through the game [8]. When
generating content for game space, narrative, or context, needs to
be generated as well. In action-adventure games, the level design is
essential, and when procedurally generating levels for these games,
it is best to break down the generation process in two steps, one
for generating game space and one for generating missions [10].

Charbitat bases narrative generation on sets of tiles, which par-
titions the game space and creates a graph that keeps track of the
player’s position. Through this, the system evaluates new possi-
ble objectives to generate that would suit better. This evaluation
takes in mind previous objectives and actions done by the player,
resulting in a more adaptive experience while also increasing the
replayability [8].

Procedural narrative generation is often approached split into
two tasks, plot and space, either automatically or manually gener-
ated [2, 10, 11, 15]. The plot is defined as a set of events with an
overall structure that represents both the temporal ordering and the
causal relations between the events. Space includes the characters,
settings, props, and anything which is present either physically or
abstractly in the space of the narrative. By generating space, they
also generate context for it, thus creating a unique narrative for
each possible outcome of the generative process.

3 GENERATING OBJECTIVES FOR
DUNGEONS

Using the room’s meso patterns and their qualities, each room is
assigned an objective described in Figure 2: defeat the enemies,
find the treasure, defeat the boss, except the initial room, which is
always excluded to avoid placing objectives where the player enters
the dungeon. When all rooms have been assigned an objective, we
calculate the number of objectives 𝑁𝑜𝑏 𝑗 needed for the dungeon
based on its size and layout. Furthermore, the number of objectives
is calculated as 𝑁𝑜𝑏 𝑗 = max(1, 𝐷𝐸 + ((𝑅 − 𝐷𝐸)/𝐾)), where 𝐷𝐸
is the number of dead ends, 𝑅 is the total number of rooms, and
𝐾 is an adjusting variable. High values for 𝐾 lower the number
of objectives per normal (non-dead end) rooms. The designer can
trigger the objective generation at any time in EDD by pressing a
toggle objectives button.

All objectives are then sorted due to their relevance. The most
relevant objective is set as the only main objective of the dungeon.
Side objectives are subsequently assigned in descendant relevance
order until the amount of objectives needed is reached. The sorting
algorithm for objective relevance evaluation calculates the follow-
ing metrics:

Figure 2: Every type of dungeon objective as both main ob-
jective (green) and side objective (blue). The icons represent
the different types of objectives (a) “Defeat the enemies”, (b)
“Find the treasure” and (c) “Defeat the boss”.

Dead end. Dead ends have a higher chance of hosting interesting
content for the player [8]. Therefore, to not make the outskirts of
the dungeon feel meaningless, dead ends are prioritized locations
for objective placement.

Distance to the player. Placing all objectives close to the start po-
sition, preventing full space exploration, would break the players’
immersion [14]. Therefore, large distances (measured in rooms)
from the player are encouraged when placing objectives.

Connectivity. Rooms connected tomany rooms have a higher chance
of the player passing through them than those with fewer connec-
tions. Therefore, to foster the exploration of these rooms, rooms
with fewer connections to other parts of the dungeon will be prior-
itized to have an objective.

Quality. The objectives are based on the existing meso patterns in
the room. Each meso pattern receives a quality score [7], that when
combined, create the quality of the room.

Objectives are then sorted in sequential steps. The policy for,
any given pair of objectives, choosing the more relevant one, is:

(1) Return the objective that is set in a dead end. If both are, or
neither of them is, then

(2) return the objective with the largest distance to the player.
If both lie at the same distance, then

(3) return the objective with lower connectivity. In case of a tie,
then

(4) return the objective with the highest quality score.

4 RESULTS AND DISCUSSION
We have carried out a total of 14 simulations in EDD for testing
the objective generation with a representative set of layouts, room
sizes, and content. In all figures and due to its importance in the
calculations, the initial room is highlighted in yellow. Out of exper-
imentation, 𝐾 was set to 4, meaning that one additional objective
is generated per every 4 normal rooms in the dungeon.

Figure 3 shows the simplest scenario (two empty interconnected
rooms), where the dead end (b) turns into a "Defeat the boss" main
objective, leaving the initial room (a) as is.

Figure 4 shows two different small sequential scenarios. In simu-
lation (a), the initial room is the leftmost one, and the two rightmost
rooms become the side objective and the main objective. This spe-
cific order makes use of all the available game space. However, in

Figure 3: The most simplistic layout of a dungeon with a
main objective (green).

Figure 4: Small single-path dungeon layouts.

simulation (b), the initial room is the second to the left. The system
adapts to this change by placing the side objective to the left of
the start position to use both dead ends and maximizing the game
space usage.

Figure 5: Small circular dungeons.

Figure 5 shows two small scenarios without any dead ends. Only
one objective (the main one) is placed under these configurations.
In both cases, to utilize most of the dungeon layout, the room on
the opposing side of the initial room gets assigned with the main
objective.

Figure 6: Large dungeon layouts with several dead ends.

Figure 6 shows results in two larger scenarios with several dead
ends. In both cases, the main objective is placed in the furthest
dead end from the start position, and side objectives with identical
distance and connectivity scores are chosen according to their

quality score. Notice how a similar layout in (b) places main and
side objectives differently based on a different start position, trying
to maximizing space usage.

Figure 7: Two large circular dungeon layouts without dead
ends.

Figure 7 generates objectives for larger circular dungeons with
no dead ends and (a) no content in any of the corners, and (b) corner
rooms with meso patterns. In (a), the lack of content in the cor-
ner rooms makes the system choose objectives in the neighboring
rooms to the furthest corner. Being both equally distant from the
initial room, the “Defeat the boss” has a higher quality and is then
marked as the main goal. In (b), the corners of the dungeon lay-
out contain content, and the system makes use of this to generate
objectives in every corner of the dungeon to maximize the usage
of game space. The remaining non-corner “Find the treasure” side
objective is prioritized over the other rooms without an objective
based on its distance from the initial room.

Figure 8: Large circular dungeons layout with dead ends.

Figure 8 introduces large circular dungeons with dead ends. In
(a), the initial room is part of the circular center of the dungeon
layout, and the system generates objectives in the various dead
ends of the layout to utilize the game space. In addition, there is a
final side objective of type “Defeat the boss” which is prioritized
because of both its distance from the initial room and its lower
connectivity.

In (b), the system adapts to the placement of the initial room
in the dead end that hosted the main objective in (a). The main
objective is relocated to another dead end, being one side objective
now placed inside the inner circular structure of the layout. “Defeat
the boss” is still a side objective since it is connected to fewer rooms
than the remaining non-objective rooms, exhibiting the relevance
order introduced in section 3.

The dungeon layout in Figure 9 is a variation of the layout in
Figure 8, now showing how the system reacts to different types
and sizes of dungeon layouts with minor changes to the dungeon
content. In simulation (a), we changed the different rooms’ sizes to
show that the system does not consider the size as a factor when

Figure 9: A large circular dungeon layout with dead ends,
rooms of different sizes and varying content.

Figure 10: Two different room designs shown with and with-
outmeso patterns toggled. (a) and (c) as well as (b) and (d) are
the same design. The two roomdesigns represent the bottom
room from Figure 9.b) and c), respectively.

evaluating and assigning objectives. Therefore, the objectives in 9.a)
are nearly identical to 8.b). The only difference is that the “Defeat
the enemies” objective in the circular structure is removed (see the
red-bordered rooms in 8.b) and 9.a)). The reason is that the two
middle rooms in the circular structure are now combined into one
big room, thus reducing 𝑁𝑜𝑏 𝑗 from 5 to 4. In (b), the big room in the
middle is now filled with several meso patterns to show that the
system does not prioritize the amount of content in a room when
evaluating the dungeon objectives.

In (c), we showcase how the system generates objectives based on
the content in the dungeon, showing how the designer is in control
of what objectives are created. The difference between (b) and (c)
is the side objective at the bottom room of the dungeon, depicted
in Figure 10.a) and b), respectively. Figure 10.c) and d) are the meso
pattern representation for Figure 10.a) and b), respectively. The
meso pattern distribution is the same, but the quality of the room
as a guarded treasure pattern is lower than its quality as a treasure
room. Therefore, swapping between a) and b) alters the nature of
the objective in the room, and a "Find the treasure" objective is
placed at the bottom of 9.c) instead.

5 CONCLUSIONS AND FUTUREWORK
Wehave developed a sub-system integrated into EDD that generates
suitable objectives based on dungeon layouts created in a mixed-
initiative environment. This integration has been carried out in a
harmonic way [16] with EDD’s already existing functionalities. The

developed artifact also enhances the mixed-initiative creative loop
in EDD, and helps the designer to visually validate their creation
in terms of narrative.

These contributions open a promising line of research on proce-
dural narrative in mixed-initiative environments. The next steps
will be adding a coherent story that ties all objectives together, as
well as articulating them by means of "quest givers" that offer dif-
ferent starting points for each objective. Ultimately, we will make
use of all these pieces to engineer a procedural narrative generator
that intertwines story, objectives, characters, and map. We would
conduct a user study to validate the resulting worlds with game
designers and players.

REFERENCES
[1] Espen Aarseth. 2005. From hunt the wumpus to everquest: introduction to

quest theory. In International Conference on Entertainment Computing. Springer,
496–506.

[2] Ahmed M. Abuzuraiq, Arron Ferguson, and Philippe Pasquier. 2019. Taksim: A
Constrained Graph Partitioning Framework for Procedural Content Generation.
In 2019 IEEE Conference on Games (CoG). 1–8.

[3] Alberto Alvarez, Steve Dahlskog, Jose Font, Johan Holmberg, and Simon Johans-
son. 2018. Assessing Aesthetic Criteria in the Evolutionary Dungeon Designer.
In Proceedings of the 13th International Conference on the Foundations of Digital
Games (Malmö, Sweden) (FDG ’18). ACM, New York, NY, USA, Article 44,
4 pages. https://doi.org/10.1145/3235765.3235810

[4] Alberto Alvarez, Steve Dahlskog, Jose Font, Johan Holmberg, Chelsi Nolasco, and
Axel Österman. 2018. Fostering Creativity in the Mixed-initiative Evolutionary
Dungeon Designer. In Proceedings of the 13th International Conference on the
Foundations of Digital Games (Malmö, Sweden) (FDG ’18). ACM, New York,
NY, USA, Article 50, 8 pages. https://doi.org/10.1145/3235765.3235815

[5] Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius. 2019. Em-
powering Quality Diversity in Dungeon Design with Interactive Constrained
MAP-Elites. In 2019 IEEE Conference on Games (CoG). 1–8.

[6] Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius. 2020. Interactive
Constrained MAP-Elites: Analysis and Evaluation of the Expressiveness of the
Feature Dimensions. arXiv: 2003.03377 (2020).

[7] Alexander Baldwin, Steve Dahlskog, Jose M. Font, and Johan Holmberg. 2017.
Towards Pattern-based Mixed-initiative Dungeon Generation. In Proceedings of
the 12th International Conference on the Foundations of Digital Games (Hyannis,
Massachusetts) (FDG ’17). ACM, New York, NY, USA, Article 74, 10 pages. https:
//doi.org/10.1145/3102071.3110572

[8] Ashmore Calvin and Nitsche Michael. 2007. The Quest in a Generated World.
In DiGRA གྷ - Proceedings of the 2007 DiGRA International Conference: Situ-
ated Play. The University of Tokyo. http://www.digra.org/wp-content/uploads/
digital-library/07311.20228.pdf

[9] Derek Yu and Mossmouth, LLC. 2008. Spelunky. Game [PC]. Mossmouth,
California, US. Last played December 2019.

[10] Joris Dormans and Sander Bakkes. 2011. Generating missions and spaces for
adaptable play experiences. IEEE Transactions on Computational Intelligence and
AI in Games 3, 3 (2011), 216–228.

[11] Ken Hartsook, Alexander Zook, Sauvik Das, and Mark O. Riedl. 2011. Toward
supporting stories with procedurally generated game worlds. In Proceedings of
the IEEE Conference on Computational Intelligence and Games, CIG 2011. 297–304.
https://doi.org/10.1109/CIG.2011.6032020

[12] Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley. 2009. Evolving content
in the Galactic Arms Race video game. In 2009 IEEE Symposium on Computational
Intelligence and Games. https://doi.org/10.1109/CIG.2009.5286468

[13] Hello Games. 2016. No Man’s Sky. Game [PC]. Sony Interactive Entertainment,
Tokyo, Japan. Last played March 2017.

[14] Henry Jenkins. 2004. Game design as narrative. Computer 44, 53 (2004), 118–130.
[15] Ben Kybartas and Rafael Bidarra. 2016. A survey on story generation techniques

for authoring computational narratives. IEEE Transactions on Computational
Intelligence and AI in Games 9, 3 (2016), 239–253.

[16] Antonios Liapis, Georgios N Yannakakis, Mark J Nelson, Mike Preuss, and Rafael
Bidarra. 2018. Orchestrating game generation. IEEE Transactions on Games 11, 1
(2018), 48–68.

[17] Mojang Studios. 2009. Minecraft. Game [PC]. Microsoft Studios, Washington,
US. Last played October 2019.

[18] Noor Shaker, Julian Togelius, and Mark J Nelson. 2016. Procedural content gener-
ation in games. Springer.

https://doi.org/10.1145/3235765.3235810
https://doi.org/10.1145/3235765.3235815
https://doi.org/10.1145/3102071.3110572
https://doi.org/10.1145/3102071.3110572
http://www.digra.org/wp-content/uploads/digital-library/07311.20228.pdf
http://www.digra.org/wp-content/uploads/digital-library/07311.20228.pdf
https://doi.org/10.1109/CIG.2011.6032020
https://doi.org/10.1109/CIG.2009.5286468

	Abstract
	1 Introduction
	2 Related Work
	2.1 The Evolutionary Dungeon Designer
	2.2 Procedural Generation of Game Narrative

	3 Generating Objectives for Dungeons
	4 Results and Discussion
	5 Conclusions and Future Work
	References

