
Assessing Simultaneous Action Selection and
Complete Information in TAG with Sushi Go!

Carl-Magnus Embring Klang∗, Victor Enhörning†, Alberto Alvarez‡, Jose Font§
Game Lab, Department of Computer Science and Media Technology

Malmö University, Sweden
Email: ∗carl.magnus@hotmail.com, †victor.enhorning@gmail.com

Email: {‡alberto.alvarez,§jose.font}@mau.se

Abstract—Digitalizing tabletop games for general game playing
(GGP) AI research is a continuously growing field. Tabletop
Games Framework (TAG) is a framework developed to simplify
the process of implementing tabletop board games to digital form.
Sushi Go! is a game that combines simultaneous action selection
and complete information. This creates a unique combination of
mechanics, which presents a new challenge for GGP agents. By
implementing Sushi Go! into TAG, we can test different agent’s
performance using these mechanics and compare them to their
existing performances in the other games of TAG. Results of
this testing are presented, which display that the framework is
capable of implementing Sushi Go! and that the agents perform
with mixed results. Further developing heuristics for the agents
should prove to increase their performance when faced with these
types of games.

Index Terms—General game playing, game artificial intelli-
gence, tabletop games

I. INTRODUCTION

Games have for many years been a tool to research artificial
intelligence, from chess to Blood Bowl [1], [2]. To improve
artificial intelligence research on games, several frameworks
have been created to help simplify the process. Game frame-
works are quite a helpful resource that provides artificial intel-
ligence researchers with tools for rapid algorithm deployment,
data collection, baseline algorithms, and generalized heuristics
that decrease their workload and make comparative analyses
possible. One such framework is GVG-AI, which provides dif-
ferent types of video games and tools [3] used for competition
in artificial intelligence. There are also frameworks that can be
used to describe and explore board games that use pre-defined
mechanics like Ludii [4] and OpenSpiel [5]. However, both
focuses on traditional board games, and in the case of Ludii,
the use of cards is not possible yet.

Another interesting framework is the Tabletop Games
Framework (TAG) that offers a way to research general AI
in modern tabletop games and add games with uncommon or
unique mechanics [6]. The framework is modular and open
source to expand its library, and it provides analytics for AI
decision making. One interesting feature that is not available
in TAG is Simultaneous action selection, which is a genre of
turn-based games where all players play their turn at the same
time. Sushi Go! is a zero-sum card game with simultaneous
action selection and end game bonuses. Sushi Go! offers a

unique type of strategic gameplay yet to be implemented into
TAG, where simultaneous action selection is combined with
delayed complete information. Delayed complete information
means that after passing the players’ hands N-1 times (N =
number of players) there are, technically, no longer hidden
elements in the game. However, keeping track of all the hands
and card movement is a difficult problem for human players,
yet it is part of the game’s strategy to win.

As of yet, not a great deal of research has been carried
out concerning intelligent agents in tabletop games with
simultaneous action selection. Soen explored using genetic
algorithms and reinforcement learning to play Sushi Go!, but
developed a custom artifact as a test bed [7]. The purpose
of this study is therefore to determine if Sushi Go! can be
translated and implemented into the TAG framework, studying
how the current built-in agents perform in Sushi Go! as
well as compared to their performance in the other games
available in the framework. Agent performance quantitative
data is collected from Sushi Go! and the other games in
the framework. By comparing the win rates of the agents,
the effect simultaneous action selection has on the intelligent
agents of TAG can be observed and researched. The extended
framework now offers a way to perform general AI research in
Sushi Go! and simultaneous action selection. The framework
also now has a way to execute simultaneous action selection
in other games by using this developed functionality, which
simplifies implementing similar games in the future.

II. RELATED WORK

A. Sushi Go!

Sushi Go! [8] is a card game for two to five players where
the goal is to collect as many points as possible. The game
consists of 3 rounds where each player collects a set of cards to
increase their final score. Different cards in the game (table I)
offer different amounts of points and some cards have special
requirements such as only being valuable if in a pair. The
player with the most points after 3 rounds wins the game.

Each round starts by dealing a specified amount of cards
for each player. Each player picks one card and places it face
down, and when all players have picked a card they reveal
them at the same time. Then each deck is passed to the player
on the left and they get to pick cards again. Once the decks are
empty, the scores are calculated and a new round is started.

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

TABLE I
ALL THE CARDS IN SUSHI GO! (AND IMPLEMENTED), AND THEIR RESPECTIVE AWARDED POINTS

Card Points
Maki Roll The player with the most maki at the end of a turn gets 6 points while the second gets 3. If equal split evenly discarding any remainers.
Tempura A set of 2 is worth 5 points, otherwise 0.
Sashimi A set of 3 is worth 10, otherwise 0.
Dumpling Points received increase with each dumpling the player has collected. 1 dumpling is 1 point, 2 are 3 points, 3 are 6 points, 4 are 10

points, and 5+ are 15 points.
Squid Nigiri Worth 9 points if stacked on a wasabi card, otherwise 3.
Salmon Nigiri Worth 6 points if stacked on a wasabi card, otherwise 2.
Egg Nigiri Worth 3 points if stacked on a wasabi card, otherwise 1.
Wasabi Worth 0 points unless combined with a nigiri card.
Chopsticks 0 points, is used to swap cards.
PuddingsCar The player with the most puddings gets 6 points while the person with the least puddings gets -6 points. If equal split evenly.

B. Tabletop Games Framework - TAG

The TAG framework [9] was developed to enable develop-
ers to easily digitalize board games by utilizing a standard
implementation strategy based on a fixed amount of game
components and states. Thanks to this, TAG can use the same
AI for every game implemented into the framework. This in
turn, allows for extensive research regarding AI performance
in complex board games, such as Pandemic or Exploding
Kittens, and Colt Express. It enables researchers to compare
results between different types of AI, compare results between
different games, and if a specialized AI is required, it can be
implemented into the framework, allowing all users to use it in
their research. TAG contains a set of pre-made agents to play
the games within the framework that facilitate the analysis and
evaluation of games and how agents play them. The agents can
be random, or use either one step look ahead (OSLA), Rolling
Mutation Hill-Climbing (RMCH), or monte carlo tree search
(MCTS) [6].

C. Simultaneous Action Selection

Simultaneous action selection is a game element that has
yet to be widely researched in AI. Wang et al. [10] showed
that in a simple rock-paper-scissors game an agent is not
only fully capable of understanding and utilizing Simultaneous
Action Selection, but also proves to be an efficient player that
reliably wins over human opponents. Shafiei et al. [11] use two
agents (Upper Confidence Bound (UCT) and Counterfactual
Regret (CFR)) to play and test their performance playing si-
multaneous action selection games with imperfect information.
CFR is more robust and proves to be the optimal solution for
the tested games, which might point out towards a promising
algorithm to be implemented in TAG. Finally, Soen [7] used
reinforcement learning and genetic algorithms to play in a
custom-made Sushi Go! implementation, but with sub-optimal
results. The agents did not have a high win-rate and it was
speculated to be either tied to the environment developed
not being complex enough to properly handle the mechanics
of Sushi Go!, or that the game itself did not function well
with the tested approaches for learning. In part, the work
by Soen motivates the implementation of Sushi Go! in TAG,
which, given it’s generic capabilities, should pass-through the
limitations he found in his work.

III. SUSHI GO! TAG IMPLEMENTATION

One of the main functionalities of TAG is the ability to
easily develop and implement new games for the agents within
the framework to play. This is done by a set of core classes
which every new game added derives from, which allows the
agents to run the same functions for all games encountered in
the framework. These classes are: ForwardModel, GameState,
GameParameters and TurnOrder. These classes contain the
set up and core game mechanics, generic game data and
functionality, game constants and functionality to keep track
of each player’s turn.

Fig. 1. Details how Sushi Go! is visualized for the player. See the MCTS
agent’s hand at the top, with their cards hidden from the other players. At
the bottom part of the playing field, the active cards played by the agent are
visible for all players.

In this implementation of Sushi Go!, the ForwardModel
handles the setup of the different card decks used in the game.
These include a draw deck, a discard deck, a player deck for
each player, and an active card deck (i.e., current played cards)
for each player. It also handles the computation of available
actions, which in turn are given by the cards present in a
player’s deck. The decks are created in the GameState class
containing the game’s generic data. The cards that fill the
different decks are created in the GameParameters class. These
are a direct copy from the tabletop version of Sushi Go! shown
in table I. Finally, the TurnOrder holds methods for progress-
ing the turn order, ending the game when the end of game
criteria is reached, and keeping track of which player’s turn it

TABLE II
SHOWCASES THE WIN RATES FOR THE DIFFERENT AGENTS PLAYING

SUSHI GO!. CALCULATED FROM 100 GAMES. ONE INSTANCE OF EACH
AGENT, ALL COMPETING AGAINST THE OTHERS.

Algorithms Random OSLA RMHC MCTS
Win Rate 21% 39% 19% 21%

is. The framework primarily offers support for games using an
altering turn order, to implement simultaneous action selection
and delayed complete information the TurnOrder class was
extended to control when turns and rounds increase. This
way each player plays their turn simultaneously, simulating
simultaneous action selection properly.

Fig. 2. Showcases what a human player sees when they play Sushi Go!. At
the top is their hand with cards available for play. At the bottom is the active
cards that have already been played. The number in the bottom left corner is
the amount of cards in the player’s hand.

Fig. 3. Showcases how available actions are presented to a human player,
related to every playable card in the player’s hand (Figure 2).

Figure 1 shows a sample screenshot of the game board
from Player 2’s perspective. Figure 2 shows a screenshot a
human player’s own hand of cards. Figure 3 shows the player
interface containing all the available actions. In Sushi Go!,
actions are tied to the cards that each player has in their hand.
For instance, if a player has a wasabi card in play, a nigiri
card can be played on top of it to double the points of the
played nigiri. Finally, the current implemented heuristic and
the one used by agents simply calculates the current score
accumulated by the player with no consideration to possible
combos or future rewards.

IV. EXPERIMENT AND RESULTS

Our experiment consisted of using the built-in agents in
TAG to determine how well they play Sushi Go! when intro-
duced to the simultaneous action selection mechanic, which

is the implementation’s goal. We ran 100 games where each
player is one of the four built-in GGP agents competing
against each other. We evaluate each agent based on their
win percentage. This statistic is chosen due to the fact that
the same data is used in [6] to determine effectiveness of the
different agents. As such, it can be used to directly compare
the agents playing Sushi Go! with how well the agents played
the other games in TAG. Similarly to Gaina et al. [9], we
collected statistics pertaining the random agent in 1000 Sushi
Go! games to highlight and analyze the challenge provided for
AI agents. The following measurements (shown in table III)
present averages observed in our experiment:

• d1 Decisions: The number of decisions an agent makes
per game.

• d2 Rounds: The number of rounds per game.
• d3 Actions Per Turn: The amount of actions an agent

makes per turn.
• d4 Ticks: The number of game loop iterations.
• d5 Action Space Size: The number of actions available

to an agent on their turn.
• d6 State Size: The number of components in a state.
• d7 Time Action Compute: Microseconds it takes for an

agent to perform an action.
As observed in table II, the highest win rate agent is the

OSLA agent. The other agents achieve roughly the same
win rate at just around 20%. The OSLA agent is performing
noticeably better than the other agents despite all of them using
the same heuristic (apart from the random agent). Further, as
observed in table III, the agents are able to execute Sushi Go!
noticeably swiftly, taking only 61.2 microseconds to compute
and execute an action (d7), based on 4.86 available actions per
turn (d5). This is also in a state with on average 70 components
that are present on the game board and part of the evaluation.

On average, the game length of Sushi Go! is fairly short
when compared to the more complex games implemented into
TAG1, such as Virus! which has a tick amount of 319.56 as
opposed to Sushi Go! which only has a tick amount of 92 (d4).
Sushi Go! differs from most of the other games in TAG due
to the limited amount of rounds per game, which is locked at
three. Decisions presented to the agents are also on the smaller
side when compared to, for example, Virus! and their 317.09
decisions, instead of Sushi Go! and their decision amount of 81
(d1). As can be seen in table III, most of the values concerning
game length for Sushi Go! are in line with the less than average
complex games of TAG, such as Love Letter or Exploding
Kittens [9].

V. DISCUSSION

As shown in table II, the agent using the OSLA algorithm
managed to win most games (39%). This deviates from the
expected results, as MCTS shows to be overall the most well-
performing agent across the already implemented games in
TAG [6]. OSLA functions by looking one step ahead in the
game state when evaluating what action the agent should take

1data extracted from both TAG papers up-to-date [6], [9].

TABLE III
SHOWCASES THE GAME LENGTH AND GAME ANALYTIC. CALCULATED

FROM 1000 GAMES, PLAYED WITH RANDOM AGENTS: DECISIONS,
ROUNDS, ACTIONS PER TURN, TICKS, ACTION SPACE SIZE, STATE SIZE,

SCORE AND TIME ACTION COMPUTE.

d1 d2 d3 d4 d5 d6 d7
Sushi Go! 81 3 1.105 92 4.86 79 61.2

in order to maximize their own gain, instead of looking deeper
as, for instance, the MCTS algorithm does. While this would
normally mean that the MCTS agent bases their decisions on
a much greater scale then the OSLA agent, we speculate that
the improved performance by the OSLA agent is due to a
lack in advanced heuristics. As such, an agent that always
chooses the most beneficial card for their own score when
deciding what action to play, and on average end up in the
most winning situation. When compared to other games within
TAG, our implementation lacks this advanced and well-tuned
heuristic, that could take into consideration different possible
combos, long-term rewards such as puddings, or the other
decks and other player’s cards. While agents can play the game
following the game’s rules, making use of the combination of
complete information and simultaneous action selection, and
it is possible to assess their win percentage and game stats,
not having a proper heuristic makes it difficult to draw final
conclusions on how they handle the specific mechanics.

Furthermore, Sushi Go! was easily implemented in TAG
using the existing methods and guides for implementing new
games. The game is considerably efficient, as simulating 1000
games gathering data took roughly five minutes on a medium-
specs laptop. Our implementation allows customization such
as the possibility to change both card values, the amount of
cards each player has and how many of each card is in the
deck to test different setups. As it can be seen in table III,
Sushi Go! is rather limited when it comes to game length and
amount of decisions. When compared to the more complex
games, the amount of decisions and rounds per game are on
the smaller side, which proves beneficial for the performance
of the game as it can’t exponentially keep going or get stuck
in an infinite game loop, due to the limited amount of rounds.
This results in an implementation that, while not optimized
in every aspect, should prove to be able to execute at very
reasonable speeds.

VI. CONCLUSIONS AND FUTURE WORK

Our work provides a detailed example on the Sushi Go!
implementation in the TAG framework and the potential that
both the framework and the game have for AI research. Sushi
Go! allows us to test and investigate complete information
games and simultaneous action selection, a common mechanic
in board games, and provides the framework with yet another
game to further research GGP agents. Through this, we
researched how capable built-in agents are at playing Sushi
Go!. This particular pair of mechanics gives a unique approach
to playing the game. Since every player knows all the cards
in play, it is possible to predict what your opponents play or

create an adversarial model. However, due to the simultaneous
action selection, the agent can’t adapt their own action by
observing their opponents, but must decide what to play based
on their predictions.

Furthermore, the artifact produced can be used in the future
to research the combined mechanics of complete information
and simultaneous action selection, while the game can also
work as a blueprint for future game implementations with
the same or similar mechanics. The heuristic used with each
agent was very basic; thus, investigating more advanced and
generic heuristics to be used by agents in Sushi Go! and games
with similar mechanics is an important area of improvement.
For instance for Sushi Go!, it would include the benefit
of collecting multiple dumpling cards to reach higher score
multipliers, and a much higher value in playing wasabi cards
due to their score multiplier when combined with a nigiri card.

As presented by Shafiei et al. [11], CounterFactual Regret
is a very interesting and promising algorithm that could be
implemented and used to cope with simultaneous action se-
lection and delayed complete information. Another interesting
area would be to implement self-play agents [12] into Sushi
Go! to continuously observe if they could improve and adapt to
the mentioned combination of mechanics. With board games
continuously growing more and more intricate with the use
of digitalization, analyzing intelligent agents playing them in
order to further advance them is valuable.

REFERENCES

[1] S. Risi and M. Preuss, “From chess and atari to starcraft and beyond:
How game ai is driving the world of ai,” KI - Künstliche Intelligenz,
2020.

[2] N. Justesen, L. M. Uth, C. Jakobsen, P. D. Moore, J. Togelius, and
S. Risi, “Blood bowl: A new board game challenge and competition for
ai,” in 2019 IEEE Conference on Games (CoG), 2019, pp. 1–8.

[3] D. P. Liébana, S. M. Lucas, R. D. Gaina, J. Togelius,
A. Khalifa, and J. Liu. The gvg-ai competition. [Online]. Available:
http://www.gvgai.net/

[4] E. Piette, D. J. Soemers, M. Stephenson, C. F. Sironi, M. H. Winands,
and C. Browne, “Ludii–the ludemic general game system,” arXiv
preprint arXiv:1905.05013, 2019.

[5] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay,
J. Pérolat, S. Srinivasan, F. Timbers, K. Tuyls, S. Omidshafiei et al.,
“Openspiel: A framework for reinforcement learning in games,” arXiv
preprint arXiv:1908.09453, 2019.

[6] R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. Perez-
Liebana, “Tag: A tabletop games framework,” in Proceedings of the
EXAG Workshop at AIIDE, 2020.

[7] A. Soen, “Making tasty sushi using reinforcement learning and genetic
algorithms,” Scientific Reports, 2019.

[8] Walker-Harding, Phil, “Sushi Go” Tabletop [Card Game], Newton, US.,
2013, gamewright, Massachusetts, US. Last played December 2019.

[9] R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. PerezLiebana,
“Design and implementation of tag: A tabletop games framework,” 2020.

[10] L. Wang, W. Huang, Y. Li, J. Evans, and S. He, “Multi-ai competing and
winning against humans in iterated rock-paper-scissors game,” Scientific
Reports, vol. 10, no. 1, pp. 1–8, 2020.

[11] M. Shafiei, N. R. Sturtevant, and J. Schaeffer, “Comparing uct versus cfr
in simultaneous games,” in IJCAI Workshop on General Game Playing,
2009.

[12] D. Hernandez, K. Denamganaı̈, Y. Gao, P. York, S. Devlin, S. Samoth-
rakis, and J. A. Walker, “A generalized framework for self-play training,”
in 2019 IEEE Conference on Games (CoG), 2019, pp. 1–8.

