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ABSTRACT

Game design is a hard and multi-faceted task that intertwines different
gameplay mechanics, audio, level, graphic, and narrative facets. Games’
facets are developed in conjunction with others with a common goal that
makes games coherent and interesting. These combinations result in plenty
of games in diverse genres, which usually require a collaboration of a
diverse group of designers. Collaborators can take different roles and
support each other with their strengths resulting in games with unique
characteristics. The multi-faceted nature of games and their collaborative
properties and requirements make it an exciting task to use Artificial
Intelligence (AI). The generation of these facets together requires a holistic
approach, which is one of the most challenging tasks within computational
creativity. Given the collaborative aspect of games, this thesis approaches
their generation through Human-AI collaboration, specifically using a
mixed-initiative co-creative (MI-CC) paradigm. This paradigm creates
an interactive and collaborative scenario that leverages AI and human
strengths with an alternating and proactive initiative to approach a task.
However, this paradigm introduces several challenges, such as Human and
AI goal alignment or competing properties.

In this thesis, game design and the generation of game facets by themselves
and intertwined are explored through Human-AI collaboration. The AI takes
a colleague’s role with the designer, arising multiple dynamics, challenges,
and opportunities. The main hypothesis is that AI can be incorporated
into systems as a collaborator, enhancing design tools, fostering human
creativity, and reducing workload. The challenges and opportunities that
arise from this are explored, discussed, and approached throughout the
thesis. As a result, multiple approaches and methods such as quality-
diversity algorithms and designer modeling are proposed to generate game
facets in tandem with humans, create a better workflow, enhance the
interaction, and establish adaptive experiences.
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PREFACE

Since I can remember, games have always been part of my life. It was a
few days before the start of the new millennium when my brother and I got
a Nintendo 64 with Zelda: Ocarina of Time. I played tirelessly until 06:00
am, which was probably the first time I stayed awake so long. Likewise, I
remember playing Metal Gear Solid 1 on my PS1, the thrill when passing
each boss and scenario, sneaking around hoping to don’t get caught and
the exclamation mark appearing was just incredible. There was a caveat
though, I did not have a memory card; thus, I had to finish the game without
turning off my PS1. I hope that you, as a reader, can imagine the challenge
that meant for a 10 years old. Passed 3 days of non-stop playing, and I
finished the game. And with just the press of a button, the game restarted
as if nothing had happened. Yet, something happened; these experiences
and the ones I left out shaped my path.

I studied game design for 6 years, and now I am on the brink of finishing
my PhD in game design and the use of artificial intelligence to generate
game content. Many experiences through my education have shaped my
interest in this research topic; from creating a small text adventure to
spending long hours to build a game engine just to prototype a garbage
truck simulator, to doing a small god game like black and white (although
those villagers never followed me). You see, I had no doubt I wanted
to do games, but I had no particular creative skill that I could hone to
make something out of this, or so I thought. I was in awe playing these
games for their fun and enjoyable moments, design, art, stories, and the
experience they created. Yet, I saw myself as completely out of touch with
these elements, and I think I can [nowadays] narrow it down to what I felt
was a lack of creativity and creative thinking. How does creativity works?
What elements constitute the creative process? How does it arise within
us? This shaped, to a large extent, my interest in the exploration of artificial
intelligence within creative domains and for creative tasks.
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Creativity has always baffled me. Nowadays, I believe creativity is an
outstanding ability that we [all] possess. Some believe that they are not
creative creatures, but in reality, and being candid about it, we are all
creative and creative actions are taken all the time. We are all confronted
with challenges and situations that require us to be creative in how we
approach them. Whether this means being creative for artistic purposes
such as painting or developing games, questioning your field and writing a
dissertation in political science, or creating variations on how to write your
name, these all require creativity. Creativity varies on the task, process,
outcome, and personal perception, which might be why people feel non-
creative [1]. Nevertheless, creativity, like our other abilities, can be refined,
developed, and fostered. The thesis that you are about to read challenges
the misconception that there are non-creative people, yet it is not about
creativity. This thesis explores a computational creativity system that
collaborates with humans in the exciting and creative area of game design
to enhance, augment, and support these human capabilities. However, in
order to do so, this system needs to show creative output and, to some extent,
recognize the human creative process. I present a computational creativity
system that I have used to study game design and, in that endeavor, analyze
and research [computational] creativity, the very thing that baffles me.

This thesis and its implications

Throughout this thesis, I will explore Human-AI collaboration as an
approach to co-create game content. As a result, it is explored how to
approach game design facets, particularly level and narrative design,
with AI algorithms in tandem with human designers. A Computational
Designer. A core part of the research concerns how to establish an effective
collaboration and collaborative environment. This is addressed by studying
the Computational Designer in a collaborative system, the Evolutionary
Dungeon Designer (EDD). Studying these collaborative systems made
two elements clear and worth their exploration; the different properties
that arise as we establish this collaboration and the need for user models
adjusted to the design task, process, and creator [2]. The former is, to some
extent, a consequence of these Procedural Content Generation systems as
discussed in [3], and in general, the tradeoffs that exist among the different
techniques (e.g., expressive generators, controllable output, explainable
processes, or adaptive systems). These are exacerbated and complexified
when moved toward collaborative tasks since the human’s current work
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and design need to be considered. One way to address these is to create
more adaptive experiences through modeling designers and their design
process (i.e., Designer Modeling).

Now, you may feel inclined to say that by studying this Computational
Designer, one might replace human designers with the caveat that we need
their design traces and examples. This is an important ethical point on these
types of systems, particularly AI-assisted design tools. A parallel discussion
goes on on Twitter every now and then. For instance, Open AI’s DALL-E
2 and GPT-3, Google’s Imagen, or Github’s CoPilot are just some of the
systems that are in the eye of the hurricane regarding the use of human
creative output to create these models, and the consideration and impact to
human creativity and creative works. While you do not necessarily need
to engage or agree in these discussions, they are relevant, important, and
necessary. There is, of course, a possibility that these algorithms, such as
the Computational Designer studied here, end up working autonomously.
Yet, in this thesis, I make the argument for AI-assisted game design and
explore the advantages and benefits of having such a system in a human-AI
collaborative scenario for both the human designer and the algorithms.
The findings support and embrace collaboration, not because it couldn’t
be used autonomously since we have demonstrated that “high-performing”
content can be generated, but because its use is useless without the human
designer. This is especially true when we consider the generation of
subjective content where metrics must be reductionist and lose nuance and
the adequate assembly or orchestration of content. However, automated
game design is an important research area where the aim is to study how
multiple game design elements, facets, and aspects could be modeled,
assessed, and generated; to explore computational creativity systems.1

Moving beyond the autonomous use of these techniques, there are other
ethical considerations and implications I have come across throughout my
PhD. Some of these points are factual discussions over what we can already
see and experience. Others are speculative, to reflect, be thought-provoking,
and raise awareness and discussion [4, 5]. For instance, what are the
implications of implementing these human-AI collaborative systems in the
workplace? These systems can completely change the workplace, how we
work, and the interactions we have. This is visible when using automated-
decision making systems in workplaces highlighting large problems with

1For the interested reader I refer to the awesome tutorial by Mike Cook: https://www.
youtube.com/watch?v=dZv-vRrnHDA.
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AI systems such as bias, privacy, transparency, and fairness [6]. The
introduction of AI as a colleague in the workplace would have a higher
impact. Society and human colleagues will need to understand how these
systems affect their work and how to collaborate with them. The benefits, as
discussed in this thesis, are plenty, but its development needs to be gradual
and elaborated together with the target group [7, 8].

Another contentious point is that it could also redefine the “perfect”
colleague. As it will be shown and discussed throughout the thesis, within
games, AI can be used to search unknown spaces for relevant content,
simulate gameplay, gather statistics, or produce content that is both on the
designers’ style and aligned to players’ requirements. This could redefine the
landscape of what is expected from designers, creating false expectations.
However, in my view, AI-assisted game design is part of the future in
game development, and many of these systems could be used to improve
the processes now in place. Popular systems like DALL-E, Imagen, or
GPT, while not made with collaboration in mind, could be used for new
interactions. Nevertheless, we need to be careful on how we implement
these systems, need to have a wider reach to society, and understand better
the needs of the target group.

Moreover, among the several points discussed by Mike Cook, one of them
is the impact Procedural Content Generation (PCG) algorithms have on the
developers’ workload. Rather than reducing their workload (one of the core
ideas with PCG), more could be expected from the developers as PCG takes
care of other work [9]. However, PCG takes care of asymmetrical workload;
reducing repetitive and tedious tasks might mean that more laborious
tasks await designers. Granted that these might be more interesting, they
still require larger labor and different intensity from developers. Rather
than working on a “sinusoidal” shape, where low (e.g., repetitive and
tedious tasks) and high (e.g., creative output) intensity tasks are alternated,
designers might end up working on a high-intensity plateau.

On a tangential point, not much discussion has taken place regarding
these repetitive tasks. On the one hand, we aim at reducing them, thus,
reducing the human workload to focus on what matters to them. On the
other hand, these tasks might be necessary for the creative process, which
is still unknown to us [10]. They might not be necessary for all, but
perhaps novice designers require them in order to try something different,
workaround them, or simply because their creative process is longer than
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more experienced designers. One outcome could be that these end up being
replaced with another repetitive task, such as adjusting these algorithms
to get the expected output.2 A similar idea is seen within EDD, where
designers take their time exploring how the computational designer adapts
to them to understand how and when to use its suggestions. Given EDD’s
nature and goal, a similar creativity support process might be in place.

Moreover, I find one more point relevant to discuss with human-AI
collaborative tools and their implementation, namely the role humans
and AI have. Throughout this thesis, the discussion mainly surrounds the
role of the computer as a colleague, but what are the alternatives, and
how could that affect the collaboration and the workplace? Partlan et
al. did a participatory design project to investigate how mixed-initiative
tools and Computer Support Tool could be implemented and be in place,
consulting with expert Game AI designers [8]. In their work, there seems
to be a representative duality under the same category, “Designer direct
implementation as editors,” where designers want full control but want
a tool as a partner as well. This duality is explored in the thesis, where
one of the aims is to establish a colleague relationship, exploring ways for
designers to have control over the algorithm without hindering expressivity.
However, colleague is just one of the many roles the computer might have.
How would the interaction be if either the human or the computer is the
manager, student, or teacher? As we assign different roles, we expect
different actions from the system, are able to grant different responsibilities
and allow certain interactions such as constraining the design. For instance,
as a manager, the system could organize multiple designers, arrange the
produced content, or require and ask for certain goals,3 which could then
mean that the system has more agency or initiative. On the other hand,
as a student, the system could take a background role, learning from the
designer (e.g., a designer model) and using different strategies such as
Machine Teaching or Active Learning [13]. However, I believe these roles
will be more fluid and dynamic throughout the design process. Instead of
remaining static, they would change according to the needs of the project
and designers.

2Systems such as Danesh explore the use of assessment tools for designers to test different
PCG algorithms [11]

3The work by M in Baba is Y’all has the AI request for specific goals that it is missing, which
the human can, of course, ignore [12]
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Part I.

COMPREHENSIVE SUMMARY





INTRODUCTION

We all test the rules, and consider bending them; even a saint can appreciate
science fiction. We add constraints [...] to see what happens then. We seek the
imposed constraints [...] and try to overcome them by changing the rules. We
follow up hunches [...], and - sometimes - break out of dead-ends. Some
people even make a living out of pushing the existing rules to their limits,
finding all the computational ’cans’ that exist: creative tax-lawyers call them
loopholes (and creative tax-legislators close them).

Margaret Boden
The Creative Mind: Myths and Mechanisms, pp. 58

Since the dawn of time, we humans have been searching [and in need]
for tools to develop our ideas or execute mundane objectives. As time
and technology advanced, more sophisticated types of assistance emerged
to cope with humans’ needs, such as vehicles to traverse longer paths or
ways to facilitate writing. With the invention of hardware and software,
its ubiquity, and the raise of Artificial Intelligence (AI), a new path for
human assistance opened up. Tools that were used to facilitate our work or
assist us into doing repetitive work, could now provide advance assistance
with smarter tools that allows us to work more efficiently. However, tools
that assist us in our tasks are not the only key factor; the collaboration
between humans has remained virtually unchanged as an essential way to
move forward and to develop new experiences. Not only to achieve greater
objectives as a group but also to develop as individuals. While the current
tools to support humans’ work and creative output are valuable in many
ways; this raises an essential question that holistically motivates this thesis:

How can we create tools that no longer behave just as aid to support our
work but can collaborate with us, to some extent, in the same way as
human collaboration functions?

3



This thesis focuses on how game design related tasks such as the creation
of game facets or designers’ design process could be explored through
Human-AI collaborative tools. While Procedural Content Generation
algorithms could be employed for automated game design [14–16], this
thesis takes a different approach and explores game design; and the creative,
organizational, and collaborative tasks that encompass that; through Human-
AI collaboration. We focus on fostering, enhancing, and augmenting human
abilities such as creativity. Multiple approaches, systems, and algorithms
representing a computational designer to collaborate in the creation of
content with a human designer are developed. These tasks could not only
be assisted by AI, but rather AI could be a colleague in the design process.
To tackle these shared tasks, a mutual feedback loop could be established,
whereby AI and humans could inspire each other to explore unknown areas
in the design landscape and reach better and more creative solutions.

Problem Statement

The proposed question is not new and has been approached by different
disciplines, under the Mixed-Initiative (MI) paradigm. MI refers to the
collaboration between human and computer where both have some proactive
initiative to solve some task. MI can be seen as a multi-agent collaboration
scenario, where the interaction should be flexible, allowing for a continuous
negotiation of initiative and leverage on each other’s strengths to solve a
task [17]. Initiative was described by Novick and Sulton as a multi-factor
model that combines: choosing the task, choosing the agent in control and
how the interaction is established, and choosing the expected outcome from
the collaboration [18].

Moreover, Horvitz discussed such a question in terms of Intelligent User
Interfaces [19], describing mixed-initiative systems and interfaces as a more
natural collaboration in a user interface that emerges from intertwining
human control and manipulation, and automation [20]. Horvitz presented
several principles of mixed-initiative interaction and its challenges, many of
which still exist [21], mainly describing this interaction as conversation sys-
tems between AI and humans [22]. Moreover, Yannakakis et al. introduced
the Mixed-Initiative Co-Creative (MI-CC) paradigm for the co-creation
of creative content, where both AI and humans alternate in the initiative
to co-design and solve tasks [23]. Their work describes key findings and
discussions for how MI-CC does not only help human designers solve tasks,
but also fosters their creativity through an interactive feedback loop and
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lateral thinking [24–26].

Nevertheless, this collaborative approach raises an initiative challenge
for either agent: Which agent should have the initiative at different stages
of the development and over the goal? The question reflects the diffuseness
of the challenge and situation, as many factors need to be considered
before appropriately indicating this. At the very least, some could say that
depending on the task to be performed and the expertise of both, either
would clearly be the one taking the development initiative. Whereas others
would position the human as the one always in control. Yet, even with a
clear answer, what happens in creative tasks to the expressivity of one of
the sides due to the other taking the initiative?

Furthermore, one context where the MI paradigm would be very beneficial
is games. Games, either digital or tabletop, are created through a complex
creative process that couple together many different creative facets in
different ways. Games contain a large amount of creative content carefully
combined and intertwined to craft specific experiences, with the addition
of rules that dictate how a player is to interact with it. In contrast with other
creative content, games are multifaceted, content-intensive, and should
be interacted, experienced, and enjoyed by others, which also creates a
complex subjective task [25]. Usually, games are developed by more than a
person (although many exceptions exist [27–29]), reaching to hundreds and
thousands of developers, with each developer specialized in different areas
such as gameplay, AI, animation, concept art, etc. Each creates a specific
part of the game and the content through collaboration and following
a road map [30, Chapter 14]. However, no matter the team’s size and
talent, the fact remains that developing games is a hard challenge [31]. As
technology advances, the requirements increase substantially for any game
facet, coupled with the users’ increase demand, the higher competitiveness
in the market, and the launch of many more platforms [32].

Procedural Content Generation (PCG) is a field within computational
intelligence in games, that focuses on the use of algorithms to create
game content [33]. PCG algorithms have been used to aid in the creation
of a plethora of games such as No Man Sky [34], Spelunky [35], or
Minecraft [27], to the extent that PCG and AI have enabled experiences
and interactions that were not possible before [36–38]. Moreover, as one of
the properties of PCG is to increase replayability by creating an abundance
of well-made content [3], games are not the only beneficiaries of PCG
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methods. For instance, they have the opportunity to be used to increase the
generality of Machine Learning (ML) approaches [39], or a step towards
open-endedness Evolutionary Computation (EC) [40].

Moreover, in design and creative tasks such as games, the designer
usually has intentions in what they are creating and goals that they want to
achieve with their design. Thus, to enable deeper MI levels to co-create
content, some control mechanisms with a varying degree of control over the
algorithms might be necessary for the designer. Through this, the designer
could direct or constraint the generated content by the computational
designer and oversee that it is within their intentions and goals. In this
case, each agent’s control and expressive properties are at the expense
of the other agents, as it constrains the space of possibilities [41]. This
is especially relevant when the aim is a creative work such as games,
where the creative expression needs to be fostered [26]. Yet, it becomes
particularly challenging when using mixed-initiative methods, where smart
approaches need to be in place for a natural conversation and successful
collaboration. The more control is given, the more constraint it exists, but
is this a problem? Is it inevitable? Boden explains it conspicuously “... We
[humans] seek the imposed constraints [...], and try to overcome them by
changing the rules. [10]”. Constraints limit the space, and as a consequence,
they are overcome by encountering creative solutions.

For this interaction to be complete, the human needs to understand the AI’s
behavior through interpretable and explainable models and systems, and the
AI needs to recognize and interpret the intentions of the humans seamlessly
as they create their content. The former is the focus of Interpretable and
Explainable AI, which seeks to create or adapt models and systems for a
better workflow between humans and AI, where humans could understand
the AI’s decision process to enable trust relationships and reach deeper
interactions [42–44]. The latter would mean that the AI could adapt
its behavior and functionality to the needs, expertise, and workflow of
individual designers or a specific group of designers. To do so, the AI
must analyze several design processes, such as the designer’s preferences,
styles, and goals, which holistically is called Designer Modeling [2, 45].
How to create these models and use them to develop adapted experiences
is a complex challenge, and understanding the implications of its usability
in the control-expressive properties, as well as other consequences, is not
trivial.
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To explore this, the main body of work presented in this dissertation is
applied and evaluated through the Evolutionary Dungeon Designer (EDD),
a Mixed-Initiative Co-Creative system, where designers can create levels
and narrative elements, such as quests or objectives for adventure and
dungeon crawler games such as Zelda [46] or The Binding of Isaac [47].
In EDD, the human designer can, on the one hand, quickly create intercon-
nected rooms forming a dungeon to be experienced by players. Meanwhile,
the computational designer collaborates by providing suggestions using
different algorithms and following multiple heuristics. On the other hand,
the human designer can compose quests using the level information and
the overarching narrative structure.

Research Questions

As motivated thus far, this thesis focuses on exploring different approaches
for procedurally generating content for games, specifically through the MI-
CC paradigm, where a human designer collaborates with an underlying AI
to create creative content. Exploring the role of computers as colleagues as
defined by Lubart [48], this thesis delves into the use of MI-CC tools and
the multiple properties that emerge from the dynamic interaction between
AI and Humans. The aim is to understand how we can enable a rich, fruitful,
and better feedback loop in these types of tools using and developing
novel AI techniques in the field of Evolutionary Computation and Machine
Learning to improve the interaction and create adapted experiences. The
thesis also analyzes and studies the requirements, challenges, and benefits
of enabling in-depth collaboration, tailored experiences, the properties
that emerge (some seemingly competing properties), and their dynamics.
Therefore, this thesis aims at addressing, discussing, and exploring the
following research questions:

RQ1. How can we use and integrate multiple algorithms such as quality-
diversity algorithms and grammars into a mixed-initiative approach to
help designers produce high-quality content and foster their creativity
while allowing them to control, to a certain extent, the generated content?

There are plenty of approaches and algorithms such as Evolutionary
Computation, Machine Learning, or Wave Function Collapse that have been
used to generate content as it will be discussed in the background chapter
(sec. I). In this thesis, we are interested in exploring these algorithms
and approaches, particularly quality-diversity algorithms, pattern-based
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systems, grammar systems and their use as encoding representation in MI-
CC systems. In these MI-CC systems, the aim is to have more controllable
yet expressive generators, and at the same time explore how they can
be used to foster the designers’ creativity and establish better human-AI
collaboration and interactions.

Quality Diversity (QD) algorithms are a relatively new family of al-
gorithms, specifically aimed at tasks and environments that require the
strengths of convergence and divergence search [49]. Leveraging on QD
algorithms to search for a surfeit of heterogeneous content while not losing
sight of the content’s quality could enable MI-CC systems to explore a
big area of the generative space producing more diverse and high-quality
solutions. Through this, the system could propose a higher range of diverse
solutions to the user, aiming at fostering the creativity of the human de-
signer [24]. Thus, how to integrate QD algorithms in MI-CC systems that
need to take into account the human work to provide valuable input is a
promising open research area and one that this thesis explores. However, it
is paramount to understand how to effectively use QD algorithms in these
systems to fully leverage their expressive power while providing control to
human designers.

RQ2. How can we use player and designer data to better understand
their behaviors and procedures to enhance and adapt Mixed-Initiative
Co-Creative systems?

Games and creative contexts are spaces where both players and designers
can express themselves, producing data on how they both interact. Research
areas such as Experience-driven PCG [50], player modeling [51, 52] or
designer modeling [2], explore the use of such data to understand particular
users [2, 53, 54] and to improve and enhance the experiences of players
and designer. Especially focusing on enabling adaptive experiences [55]
and more accurate heuristics [56–58]. However, how to use the data
(and even what to collect) is still an open research area, especially when
applied to adaptive experiences for MI-CC tools with only a few relevant
examples [45, 59, 60]. Furthermore, the importance of enhancing the
experience of MI-CC tools’ users lies in the search for deeper understanding
and collaboration between humans and AI, which could enable a better
experience for both.

RQ3. How can we model different designers’ procedures and use them
as surrogate models to anticipate the designers’ actions, produce content
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that better fits their requirements, and enhance the dynamic workflow of
mixed-initiative tools?

RQ3.1 What trade-offs arise from modeling and using de-
signer’s procedures to steer the generation of content towards
personalized content?

RQ3.2 What constraints are created over the generative pro-
cess when using designer models?

The advantage of having the human and AI collaborating is analogous
to humans collaborating, each one with their own set of strengths and
weaknesses to reach greater objectives and develop each other. However,
mixed-initiative collaboration requires both human and AI to understand
each other and the goals that the human aim to reach [18, 21]. This creates
a particular problem where the AI needs to identify certain processes and
characteristics of the human. When employing MI-CC to co-create games
and creative artifacts; this translates to design processes, style, preferences,
intentions, and goals. This thesis aims to explore how to model different
designer procedures such as preference or style, using several Machine
Learning methods, and how to best use these as surrogate models to produce
better content and enhance designers’ experience using MI-CC systems.

RQ2 and RQ3 drive the research on how to gather and use different
types of data, i.e., player and designer data, and whereas designer modeling
could be used in the MI-CC feedback loop to create adaptive experiences.
Through RQ3.1 and RQ3.2, this thesis focuses on exploring the trade-offs of
using designer modeling. Specifically, the interest lies in the challenges and
benefits that designer modeling creates for the algorithms and designers,
and the overall experience that the designer wants to create, i.e., the game.

Moreover, the constraints that emerge from using these models as
surrogate models to steer the content generation are not trivial to address
and are essential to study to understand and analyze their effect and extent.
Using these models will inevitably create constraints over the generation
process as we aim to adapt the experience to each designer or group of
designers. Therefore, RQ3.2 specifically aims at understanding: what are
these constraints? What is constrained? And whether these constraints are
positive or negative?

RQ4. How can level design and narrative interact, act as constraints, be
intertwined, and in general, have an active role affecting each other to
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produce a holistic system?

RQ4.1 What are the factors to be considered when imple-
menting such a paradigm and system in a mixed-initiative
application, where a designer will be able to interact with the
content?

RQ4.2 What are the effects of producing and using a holis-
tic system for the creative process of a designer, and what
challenges are imposed on computational creativity?

The intertwined, multi-faceted, and collaborative nature of games invites
the exploration of how to generate different facets and how to intertwine
them. Facets in a game are seldom produced in a vacuum, and the coherence
of a game and cohesion of game content rely on these facets to be relevant
and aligned with each other. The automatic generation of game content
could follow a similar process, so the resulting content feels coherent,
which has been categorized as Holistic PCG [61,62]. Usually, systems that
generate several facets focus on a hierarchical and step-by-step process
where each facet is generated successively and, at times, not relying on
the other generated facets but rather on an overarching design goal. The
generation of game facets could then have some feedback loop, where
content generated in one facet has an effect on another, and vice-versa,
generating content in unison, i.e., orchestrating game content.

Moreover, the importance of space or game worlds and narrative has
been pointed out by previous research in different disciplines. For instance,
Aarseth links the space to the quest in games, both dependant on each
other [63]. Ashmore and Nitsche present a similar point in relation to the
games’ interactivity as they discuss that a generated level without depth and
context lacks interest for the final user [64], further discussed and related
by Kybartas and Bidarra with a focus on story automation [65]. Similarly,
Dehn [66] defines space (i.e., the world) as a post-hoc development and
justification for authored events, while Lebowitz [67] argues for the opposite
view, the story gives meaning to a created world. Looking at the narrative-
space discussion from whichever angle and perspective, it is noticeable
that one requires the other to develop fully and fruitfully. Therefore, the
intertwined generation of both facets is a suitable first approach to holistic
PCG, which this thesis explores.

Nevertheless, there are several challenges when posing content generation
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as a multi-faceted and intertwined task, such as how to represent the content,
what elements to use as constraints, or how to evaluate the generated content.
Yet one of the objectives explored in this thesis is to add and combine this
into an MI-CC system. This exacerbates the challenge, as human input
and control become central, and we consider their input and initiative
and the role of the AI in the system. Likewise, MI-CC challenges and
considerations are extended, whereas the generated content must not only
adapt and be relevant for the human (considering their input as well) but
also maintain and adapt to other constraints from different facets.
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Pronouns, Style, and Clarification

Throughout the thesis, the pronoun “we” will be used in favor of “I”, since
the work and research achieved and presented in this thesis would not have
been possible without my co-authors’ collaboration.

When referring to a player or designer, this thesis chooses the pronouns
“they” and “their” to respect a gender-inclusive language. Moreover, through-
out the thesis, it is referred to as user and designer alike, as a designer is
the target user group within the possible user base of the systems and tools
developed in this thesis. The player is referred to as the end-user: the user
who could experience the creations in the Mixed-Initiative Co-Creative
system.

When discussing the participants in a mixed-initiative system, i.e., AI
and Human, this thesis uses the word “agent” when needed to refer to
either, unless specifically discussing one in particular, as mixed-initiative
systems have been described as multi-agent systems [17].

Finally, this thesis will refer to as “computational designer” to the overall
AI system that interacts and collaborates with the human designer to create
content through the MI-CC system.
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BACKGROUND

This chapter offers an overview of the different fields surrounding the central
subject of study in this thesis, i.e., the collaboration between AI and humans
to co-create game content, and the related RQs. First, Procedural Content
Generation is explored with multiple examples of the type of content that
might be created. It is then presented the search-based approach, quality-
diversity algorithms, and the Mixed-Initiative paradigm as they are the
main approaches and paradigms used throughout the thesis. Then, player
and designer modeling is presented to give an overview of the concepts and
the differences between them, and examples of each computational model.
Finally, creativity and computational creativity are explored by briefly
analyzing the field’s goals with the most relevant literature and presenting
examples within the computational intelligence in games research area.

Procedural Content Generation

Game content is the main component of any game, as it is what players
interact with to achieve the designers’ developed experience. Game content
refers to anything within the game, from the game’s rules, a hero’s backstory,
or the levels to be traversed by players. However, game engines and Non-
Player Characters (NPC) behaviors are not considered the same type of
game content as the former is used to create the games themselves, and
the latter refers to the AI behavior in-game (e.g., movement or combat).
Furthermore, as higher possibilities for more complex games are provided
by technology, game engines, and platforms, and developers and players set
higher requirements, games have increasingly become content-intensive
entertainment mediums.

To cope with this challenge and to relieve the burden and workload of
game designers when creating all this content, several approaches have
been proposed to create content under the field of Procedural Content
Generation. PCG refers to the creation of content, mainly for games, using
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algorithms, autonomously or with the assistance of users [33]. Content can
be divided into game facets: audio, visuals, narrative, levels, rules, and
gameplay [61], and have been categorized within the PCG field as Game
Bits, Game Space, Game Systems, Game Scenarios, Game Design, and
Derived Content [68].

There are plentiful of commercial games that utilize one way or an-
other PCG such as The Binding of Isaac [47] or Civilization [69], to
the point that some games rely critically on these algorithms, providing
experiences otherwise not possible such as Rogue [37], Dwarf Fortress [70]
or AI Dungeon [36]. However, there has been an increasing interest in PCG
during the past decade in academia [71]. There exist multiple approaches
addressing different challenges in the creation of content, resulting in algo-
rithms that can autonomously create game rule’s [72,73], narratives [64,74],
levels [75–77], graphics [78, 79], and audio [80, 81].

Another approach is to focus in the generation of content in multiple
facets aiming at creating intertwined content; known as Holistic PCG [61,
62]. By approaching content generation as a multi-faceted task, games
and their content can be more coherent. There have been approaches
focusing on generating complete games [72, 82, 83], but usually only some
facets are targeted based on their criteria, requirements, and synergy. For
instance, in [84] and [85], mechanics, graphics, and levels are generated
together, although through different processes. Two facets that are commonly
associated with each other are the narrative and level facet [64, 86–88].
This is due to the fact that space requires context to make sense of it, and
narrative requires space to develop. Nevertheless, these approaches usually
follow a hierarchical procedure, where content in each facet is generated
step-by-step such as in the work by Dormans [86], which generates the
mission graph that guides the level generation.4 Yet, works like the one
by Hoover et al. [89], Holtar et al. [90] or Karavolos et al. [91] present
interesting results and examples of more intertwined content generation.

Furthermore, within the field of PCG, there exist [arguably] three main
approaches to create content: constructive approach, generate-and-test
approach, and search-based approach, each with their criteria [92]. Con-
structive approaches focus on generating content following a set of prede-
fined rules that can create valid content without evaluating the quality of
the content after generating, rather the content is evaluated as it is being

4This approach is also used in Dormans’ games Unexplored and Unexplored 2.
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constructed [93–95]. Conversely, generate-and-test approaches focus on
creating content iteratively that instead of being continuously tested as
the content is constructed, it is tested after generation to satisfy a set of
constraints or objectives. When tested, the process might iterate on the
design. In this approach, the designer’s focus is on creating the set of con-
straints to be satisfied [96, 97]. Search-based approaches are a specialized
case of the generate-and-test approach that aims at using some type of
search algorithm, mainly Evolutionary Algorithms, to generate content
by exploring the generative space and through this process, encounter
interesting individuals with non-trivial characteristics [55, 98].

Besides these three main approaches, there exist other ones to gener-
ate content. For instance, Constraint Solving algorithms such as Wave
Function Collapse (WFC), do not directly map their procedures to the
aforementioned processes [99, 100]. Other examples are techniques within
the PCG via ML approach [101] such as approaches to repair unplayable
generated content [102] or generating content using learned probabilities
from sample content [103]. However, this thesis focuses mainly on using a
search-based approach to generate suitable content suggested to a designer
in an interactive tool through QD algorithms [104]. Our approach relies on
exploring the generative space informed by a designer’s design that helps
focus the search in different areas of the space while still encountering
diverse solutions for the designer.

Search-based Approach
The search-based approach is a specialization of the generate-and-test
approach, where the aim is to use some search algorithm, being the most
prominent, Evolutionary Algorithm. However, essentially any metaheuristic
algorithm and from the stochastic search algorithm family could be used
as well and fall under the umbrella of search-based approaches. The main
distinction between the search-based approach and the generate-and-test
approach is that search-based approaches evaluate the generated solution
with a quality estimator, e.g., fitness function or novelty behavior, providing
a continuous evaluation of the generated content. Such evaluation drives the
next generation steps, as the estimation helps the search to find promising
paths.

Search-based approach has been widely used in PCG and basically for
the generation of all the types of game content such as levels [86], rules [73]
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or weapons [105]. Moreover, the evaluation of the generated content is
the most important part of search-based approaches, as well as the most
challenging and complex. The used heuristics does not only need to be
representative of the task at hand but also allows the expressive property of
the search, as that is one of the main benefits of search-based approaches.
Constraints to ensure quality [or playable] experiences are not enough,
since that does not necessarily represent what a designer or player wants 5.
However, evaluation functions come in all shapes and sizes, and they are
all valid with their own set of ups and downs. For instance, they might
come from game design concepts such as design patterns [106] or game
level metrics [56, 57].

Quality Diversity

Quality Diversity (QD) algorithms are a family of algorithms under the
approaches in Evolutionary Computation, that focuses on combining the
benefits and strengths of both convergence search, i.e., focusing on opti-
mization and objective, and divergence search, i.e., disregarding objectives
and searching for diversity [49, 107]. Through this, QD algorithms seek
to generate a collection of high-performing solutions that are as diverse
as possible6. While convergence search refers mainly to the typical EC
algorithms used for optimization, divergence search has increasingly being
used to tackle many tasks that were previously dominated by convergence
search. For instance, when the task or environment is deceptive, i.e., reach-
ing the goal might be impossible or where plenty of local optima exist
where a convergence search might get stuck. Lehman and Stanley proposed
the Novelty Search algorithm, which introduces the idea of divergence
search through ignoring objectives and searching for novel behaviors in-
stead, with surprisingly good results [108,109]. From that moment onward,
several divergent search algorithms have been proposed, such as surprise
search [105] or the Paired Open-Ended Trailblazer (POET) [110–112] to
explore open-ended algorithms, as well as variations to novelty search such
as constrained novelty search [113] or Novelty Search Local Competition
(NSLC) [114].

NSLC is an example of a QD algorithm that leverage on the divergent
search to explore the space for novel behavior among solutions and on

5One of the challenges of generating games [and game content], is that it requires them to be
fun and interacted as discussed in the previous section.

6The following website serves as a database with research related to QD: https://quality-
diversity.github.io/ maintained by Antoine Cully
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convergence search for preserving the high-performing individuals within
the novel niches [114]. Multi-dimensional Archive of Phenotypic Elites
(MAP-Elites) is another algorithm in the QD family, and one that has
gained considerable popularity in multiple areas such as games [115–117]
and robotics [118, 119]. As the other QD algorithms, MAP-Elites explores
the behavioral space for a collection of solutions that are both high-
performing and diverse among each other, with the caveat that MAP-Elites
discretizes the behavior space as a grid of cells informed by a set of
feature dimensions that illuminate the behavior space. MAP-Elites’ goal
is to fill each cell belonging to a set of discrete feature dimension values
with a high-performing individual encountered in the search and retain
it until a higher-performing individual with similar characteristics is
encountered [120]. This characteristic allows the exploration of features
orthogonal to the fitness function that allow the discovery of diverse
behavioral repertoires [121–123].

One major challenge with MAP-Elites is the curse of dimensionality,
since each new feature dimension used adds a new dimension in the
search space. Thus, some MAP-Elites variation skip the grid architecture
and focus on reducing the amount of feature dimensions or enabling
the use of higher dimensions such as Centroidal Voronoi Tessellation-
MAP-Elites [124] or Cluster-Elites [125]. Further, the Covariance Matrix
Adaptation MAP-Elites algorithm combines the effective adaptive search
of Covariance Matrix Adaptation Evolution Strategy with a map of elites,
yielding large improvements for real-valued representations in terms of
both objective value and number of elites discovered [126]. The work by
Fontaine et al. was expanded into the Multi-Emitter MAP-Elites, improving
the quality, diversity, and convergence speed of MAP-Elites in general [127].
Other work within MAP-Elites has focused on its robustness [128], multi-
objective tasks optimization [129], or assessing its properties when coupled
in interactive environments [130].

Moreover, within the field of games QD algorithms have started to be
used extensively, especially MAP-Elites, both for gameplay and agent
behaviors [131, 132], and the generation of content [104]. MAP-Elites has
been used to create and find levels with just the right difficulty for a set of
agents [133], to balance and create decks in hearthstone [117], or create lev-
els for puzzle games through crowdsourcing [12]. Constrained MAP-Elites
introduced by Khalifa et al. [134], combines MAP-Elites with the Feasible-
infeasible Two-Population (FI-2Pop) algorithm [135], to generate bosses
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for bullet hells games in Talakat. Since then, constrained MAP-Elites has
been used in other projects and experiments to benefit from its strengths,
such as to generate game levels based on mechanics as feature dimensions
in Mario [115,136], and was combined with interactive evolution resulting
in the Interactive Constrained MAP-Elites [116, 137].

Thus far, the focus has been on discussing PCG and presenting algorithms
that create content mostly autonomously. Automated game design is a
complex task since it is required to create content (or full games) by itself
with the help of heuristics, user models, and logic among the content
created [16, 138–140]. However, another paradigm within PCG is the
mixed-initiative paradigm, where AI can collaborate with a designer to
co-design games. Through this, we could leverage the strengths of both to
create content.

Human-AI Collaboration

An alternative path to work with AI would also be Human-AI collaboration
instead of AI automation. On the one hand, humans have qualities that are
paramount in the collaboration such as subjective and domain knowledge,
expert intuition, and a holistic perspective regarding external aspects. On
the other hand, AI have many qualities that are favorable for Human-
AI collaboration. It can, 1) go through big amount of data and learn
representations from that, 2) explore the possibility spaces in several
dimensions, which might be too prohibiting for humans, and 3) have a
holistic perspective on multidimensional aspects with specific domains.

In general, using AI algorithms to generate content come with a set
of requirements and properties that we would like them to have [3]. For
instance, the algorithm should be expressive: it should generate diverse
content; controllable: it should be possible to steer the algorithm; or adap-
tive: it should adapt to other content. Expressiveness has been more widely
research within PCG mainly as a means to evaluate generators [141–143].
Controllability, on the other hand, has been less explored but remains as a
fundamental property for practitioners and designers [8, 144, 145]. Further-
more, as we reshape tasks and environments for Human-AI collaboration,
these properties become even more relevant since they are coupled with
human interaction. For instance, adaptiveness can be discussed by adapting
to what the human creates, their criteria, or other generated content. Moving
towards Human-AI collaboration raises up two other important properties
as well, namely, explainability and subjective evaluation. explainability is
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a long-term goal and research area in AI [43,146], which is emphasized
in these collaborative scenarios [42]. Subjective evaluation such as fun
or interesting, is a hard task for optimization; thus, through Human-AI
collaboration we can leverage human knowledge for assessment. These
properties and their possible benefits and tradeoffs are explored in this
thesis in multiple ways discussed in section I. For instance, designers are
given means to control various aspects of the computational designer to
steer the generation, and in turn, we explore how this affect the algorithm’s
expresiveness.

Moreover, the role that both human and AI play in this collaboration
are as important as the properties that arise from it. Knowing, identifying,
and setting the role for either agent sets the tone for the collaboration
and what is expected from both. This was discussed by Guzdial et al.,
where designers perceived the collaboration differently depending on the
assigned role for the AI, varying between: friend, collaborator, student,
or manager [147]. Guzdial et al.’s work is based on the colleague role
introduced by Lubart, where there is a partnership between computer and
humans. Lubart discussed three other roles that the computer might have
to promote creativity; computer as nanny: management of creative work;
computer as pen-pal: communication service between collaborators; and
computer as coach: Using creative enhancement techniques [48].

Mixed-Initiative Paradigm
Mixed-Initiative (MI) refers to the collaboration between Computer and
Human to solve some task where both have a proactive initiative into solving
the task regardless of the degree of such initiative [148]. Yet while this
definition clearly separates MI approaches from others that “simply” assist
humans in their tasks, it still remains a very disputed concept as: which
agent initiates the “conversation”, what task to be solved, and what initiative
to take in each step remain unknown. Novick and Sutton discuss MI by
analyzing a set of MI systems, and conclude that the initiative in MI is a
multi-factor model, described as: 1) choice of task: describing the task;
2) choice of speaker: describing which agent is in control and how the
interaction works; 3) choice of outcome: describing what is the outcome of
the interaction [18]. Moreover, Allen describes MI systems as multi-agent
collaboration scenarios. These need to have a flexible interaction strategy,
leveraging each agent’s strengths to solve the tasks, and that involves a
continuous negotiation between agents to determine roles, i.e., initiative;
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thus, collaborating as a team [17]. The initiative will vary depending on
which agent can solve a determined problem, providing solutions and taking
the control while the other agents, e.g., a human or group of models, assist
in the procedure [149]. Similarly, Horvitz discusses MI as a more natural
collaboration between agents that explicitly integrate human control and
manipulation, and [AI] automation strategies and their contributions to
achieve some [shared] task [20, 21].

Mixed-Initiative Co-Creativity
Yannakakis et al. introduced the Mixed-Initiative Co-Creative paradigm
for the co-creation of creative content such as games, and regarding PCG,
where machine and humans alternate initiative to co-design content [23].
Their work and discussion on the capabilities of such interaction to foster
creativity on both humans and machines is pivotal for understanding and
develop MI-CC tools that can reduce the designer’s workload, foster their
creativity, and in general, improve the design and creative process [24, 26].

Germinate [150] is a MI-CC system to co-create rhetorical games
using the constraint-based game generator Gemini [96] under-the-hood. In
Germinate, the designer can, in iterations, specify a set of constraints and
properties they want games to have and which the generator will consider.
The designer is then presented a set of games that they can play and inspect,
and which they can use to modify the set of constrained previously set,
improving their understanding of their own intent. Germinate focuses on
accessibility by leveraging on the concept of Casual Creators [151] within
the MI-CC paradigm, allowing through this iterative process, the designer
to focus in the constraint that reflects their intent rather than any knowledge
within game technology.

Delarosa et al. presented an innovative MI-CC system, where the com-
putational designer is represented as three different agents with different
representations trained using Reinforcement Learning (RL), suggesting
specific changes to the designer as they create Sokoban levels [152]. Their
approach is the first implementation of the work by Khalifa et al. that
introduced a new approach to create content: PCG via RL [153]. In PCG
via RL, the level creation process is set up as an RL problem, i.e., a
sequential task, where the agent can learn policies to maximize the quality
of the final level. Khalifa et al. approach use three different representations,
i.e., different types of agents, to create levels: Narrow: at each step the
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agent is located randomly in the level and can perform an action in such
place; Turtle: at each step the agent can move and change tiles in the way;
and Wide: at each step the agent has control of location and placement of
tiles. Likewise, Delarosa et al. work includes the same agents and have an
identical premise, i.e., level generation as an RL problem, with the caveat
that these agents must now learn and adapt to a designer’s design. The
designer is suggested levels based on their own by each of the agents, which
the designer might pick or disregard and continue editing. Their work was
evaluated through thirty-nine sessions and showed that, on average, the
levels created using AI suggestions were more playable and complex.

The Sentient Sketchbook is a tool where designers can co-create low-
resolution sketches of strategy levels while being presented augmented
information about their creation and suggested variations using multiple
heuristics and objectives [154]. In the Sentient Sketchbook, the designer
focuses mainly on creating the sketch they envision, while the computational
designer focuses on three main aspects. 1) Provide suggestions adapted
to the designer’s current design using constrained novelty search [113].
2) Provide augmented information on how the level is formed such as
resource safety or navmesh. And 3) provide multiple levels of visualization
that transform the designer’s sketch into usable levels. Further, the main
feature of the tool and its most innovative one is the suggestions by means
of an EA powered by three different search algorithms: objective-driven,
objective-driven with diversity preservation, and novelty search [155]. The
work by Liapis et al. is seminal to analyze and understand how MI-CC
systems have evolved and the benefits that they have for designers and AI
likewise.

Cicero is a special kind of MI-CC system, where the focus is on helping
designers create complete games in the General Video Game AI (GVG-AI)
framework7 [156] and Video Game Description Language (VGDL) [157],
rather than individual game content [158]. In Cicero, the aim is to let the
designer create the game they want while receiving suggestions on what
content might be added next related to sprites, mechanics, interactions
between entities, stats, or game’s rules [159]. Technically, Cicero uses a
recommender system (Pitako) that using the A-Priori algorithm, learned the
multiple and common sequence of actions, sprites, and rules that compose
all the database of games in the GVG-AI system. Thus, the suggestions that

7http://www.gvgai.net/
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the designer receives are based on their creation and the statistics behind it
in the system rather than exploring possible solutions as for instance, in the
Sentient Sketchbook. Machado et al. evaluated Cicero in a user study with
eighty-seven students demonstrating that it increased the users’ levels of
accuracy and computational affect when assisted, and supported one of the
main benefits of MI systems, the decrease of participant’s workload [160].

Tanagra presents a collaborative scenario where the designer can create
platform levels together with an AI that focuses on menial tasks of the
creation process, and which in any moment the designer can request to “fill
the blank” [161]. Throughout the design process, the designer can place
constraints with actual platforms. The AI using a reactive planner either
creates a playable level considering the constraints or informs the designer
that no level can be created satisfying the set of constraints. Through
this, the design process shifted from focusing on the correct placement of
platforms, respecting all the possible game rules, to focusing on providing
subjective evaluation and exploring the generated content.

While Tanagra presents an approach where the computational designer is
designated to “fill the blank” based on the designer’s design, more autonomy
and initiative can be given to the computational designer for creating content
in a continuous design process with the same premise. Morai Maker is a MI-
CC tool to co-create levels in the Mario AI framework [162] (a Super Mario
Bros. [163] clone for AI research8) through turn-taking phases between
designer and computational designer [164]. The designer is initially in
command of creating the first sketch of the level. Then by passing the turn,
the computational designer can add content to the level and when finished,
passes the turn and so on and so forth, until the designer is satisfied with
their creation. One of the main innovations of the work by Guzdial et al.
is that the computational designer is trained through RL, learning as it
takes each turn since the designer can delete unwanted content created
by the computational designer. Through this, the computational designer
continuously learns to adapt to the designer’s requirements and goals with
positive and negative reinforcement.

Moreover, Lucas and Martinho presented 3Buddy [165], a MI-CC system
to create dungeons in the game Legend of Grimrock 2 [166], where the
computational designer acts as a colleague working in lockstep. Like

8Ahmed Khalifa is the current mastermind behind the Mario AI Framework: https://github.
com/amidos2006/Mario-AI-Framework
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Morai Maker and Tanagra, and with the idea of a conversation between
agents, the designer is suggested variations to their current design when
requested, which they can use to replace their design, discard it, or use
parts of it. The computational designer uses an EA generating individuals
in three different pools: convergence: similarity between current design and
generated individuals, innovation: dissimilarity between current design and
generated individuals, and guidelines: following human-input constraints.
The most interesting aspect of 3Buddy is that the designer can specify
an area where they will work on and another where the computational
designer should focus, thus working simultaneously on different areas of
the dungeon.

Furthermore, Karth and Smith’s approach uses a modified version of
the WFC algorithm [99], which while not strictly a MI-CC system; their
approach focuses on the designer providing positive or negative examples
to the algorithm, for it to use it to generate variations following such rules.
Their novel approach presents a different design process somewhat similar
to Morai Maker. Designers show the algorithm what they like and dislike
to drive the algorithm’s output to their goal [100].

This thesis revolves around the Evolutionary Dungeon Designer (EDD),
a MI-CC tool to co-create adventure and dungeon crawler games, partic-
ularly, developing their narrative [167, 168] and levels [116]. EDD uses
the Interactive Constrained MAP-Elites QD algorithm to continuously
suggest adaptive, diverse, and high-performing solutions [137]. As EDD
is the main research tool developed and used in this thesis, a chapter
is reserved for presenting the tool, all its features and algorithms, and
discussing the main contributions around it.

However, while MI-CC systems bring many benefits to design tools such
as reducing workload, fostering creativity, providing adaptive experiences,
learning design concepts, making game design tools more accessible, or
creating various experiences, they have not being adopted by the game
industry yet [8]. This is because, firstly, MI-CC tools and common computer-
aided design tools such as game engines (Unity, 2005; Unreal Engine 4,
2014), differ in their goals. In the former, the focus is on leveraging each
agent strengths and where one’s weakness, such as lack of knowledge in
game design, can be supplied by the other agent. For instance, using game
design patterns to help designers build levels [41, 169]; thus making these
tools more accessible. In the latter, the focus is on providing a plethora
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of interconnected tools and systems unified in a system that relies on the
designer having the complete initiative and expert knowledge to connect
the bits that form the design of the game. Secondly, to have a natural
dialogue and collaboration between AI and designers as discussed by
Horvitz [20], both need to understand each other design processes such as
intentions and goals. Thirdly, to enable more autonomy in the interaction
between human and machine, and give a varying degree of initiative to the
machine to co-create the game content a game designer has as a goal, these
tools are required to identify and use different designer’s processes and
design procedures. Therefore, the following section is devoted to discussing
designer modeling, an approach to achieve the before-mentioned third
point, through modeling certain designer’s processes and use them to drive
the generation of content.

Modeling players and designers

Player modeling relates to the study of players in-game to compose
computational models on the player’s characteristics that arise when
interacting with games as cognitive, affect, and behavioral patterns [170,
171]. Through this, the aim is to understand the player’s experience when
interacting with a game. Player modeling usually relies on data-driven
and ML approaches with user-generated gameplay data, and have been used
with a vast amount of goals. For instance, for automating playtesting [52,
172], identifying player types (using Bartle’s taxonomy [173]) based on their
playstyle [53], to understand and model in-game player’s motivations [54],
or for market purposes, to understand how players play and are engage in
free-to-play games [174–176].

Furthermore, the combination of Machine Learning (ML) with PCG has
led to the rise of Procedural Content Generation via Machine Learning
(PCGML), defined as the generation of game content by models that have
been trained on existing game content [101]. PCGML has been used for
autonomous content generation [177], content repair [178], mixed-initiative
design [164], or content adaptation [179]. The use of user models is essential
for the generation of adaptive and tailored content, and when discussed in
the context of PCG, usually relates to experience-driven PCG [50].

Content adaptation can take place as players play or use the content
online or offline, building models from collected data. For instance, Duque
et al. adapt and adjust the difficulty of generated content as players play the
game using bayesian optimization [179]. Summerville et al. model players
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automatically and implicitly by learning from video traces; generating
levels that correspond to the latent player models [180]. Player models
could also be used to enhance and adapt design tools, specifically MI-
CC tools [52,181]. Further, training models on gameplay data from Tom
Clancy’s The Division have also been used to model, and therefore find
predictors of player motivation [54], which renders a very valuable tool
for understanding the psychological effects of gameplay. Former research
followed a similar approach in Tomb Raider Underworld, training player
models on high-level playing behavior data, identifying four types of
players as behavior clusters, which provide relevant information for game
testing and mechanic design [53]. Melhart et al. take these approaches one
step further by modeling a user’s Theory of Mind in a human-game agent
scenario [182], finding that players’ perception of an agent’s frustration is
more a cognitive process than an affective response.

Designer Modeling
Understanding player behavior and experience, as well as predicting the
player’s motivation and intention, is key for mixed-initiative creative tools
while aiming to offer in real-time user-tailored procedurally generated
content. Nevertheless, the main user of MI-CC tools are designers, and
gameplay data is replaced by a compilation of designer-user actions and
AI model reactions over time while both user and model are engaged in a
mutually inspired creative process. A fluent MI-CC loop should provide
good human understanding and interpretation of the system, as well as
accurate user behavior modelling by the system, capable of projecting the
user’s subsequent design decisions [183]. In the same line, goal thirteen in
the guidelines for Human-AI interaction [184] highlights the importance
of learning from user behavior and personalize the user’s experience by
learning from their actions over time.

Shifting towards a designer-centric perspective means that besides focus-
ing on player modeling, it is necessary to focus on modeling the designers.
Liapis et al. [2, 45] introduced designer modeling for personalized ex-
periences when using computer-aided design tools, with a focus on the
integration of such in automatized and mixed-initiative content creation.
The focus is on capturing the designer’s style, preferences, goals, intentions,
and iterative design process to create designer models. Through these
models, designers and their design process could be understood in-depth,
enabling adaptive experiences, further reducing their workload and foster-
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ing their creativity. Most of the focus has been on player modeling when
generating content [52, 181], but the nature of MI-CC systems and its
adaptiveness goal require this designer-centric shift. Modeling preferences
has been the focus on some recent work using as a proxy the designer’s
content and their choices [59, 60, 185], but other modes such as style,
underlying goals, or design process are interesting avenues [186]. However,
how to capture this content, how to operationalize it into working models,
or where to apply them in the pipeline are open questions.

As part of this thesis work, two approaches to model different designer’s
processes have been proposed, the designer’s preference model [185] (paper
iv), and design style cluster together with designer personas [186] (paper
ix). The work presented in paper iv introduced the Designer Preference
Model, a data-driven solution that learns from user-generated data in
the EDD. This preference model uses an Artificial Neural Network to
model the designer’s preferences based on the choices they make while
using EDD, which is then used to drive the content generation. Moreover,
The work presented in paper ix uses data from the design process of 180
sessions to analyze the room styles created along the process, yielding
twelve clusters representing such styles. The design process was again
analyzed in function of these formed clusters, where we encountered four
archetypical paths, i.e., designer personas, that were most commonly taken
by designers with the aim to be used to drive the generation of content
towards more adapted content.

Computational Creativity

Creativity is “the ability to produce work that is both novel (i.e., original,
unexpected) and appropriate (i.e., useful, adaptive concerning task con-
straints) [187]”. How creative processes occur, how an individual might
come up with novel ideas, or how to assess creativity is very much an
open research area [10,188–190]. Moreover, Computational Creativity is a
multidisciplinary field that studies computational systems that demonstrate
human-like creative behaviors [191]. As a multidisciplinary field, CC is
not only interested in the algorithms or the outcome; it also aims to study
the creative process and psychological causes of creative behaviors. Thus,
through CC, some core concepts and research areas in creativity can be ad-
dressed. For instance, in the Creative Mind: Myths and Mechanism, Boden
studies and analyzes Creativity and creative behaviors with the use and
help of AI through the lenses of Computational Creativity. Boden discusses
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three forms of creativity: combinatorial: combining existing knowledge
in unfamiliar ways to produce new artifacts; exploratory: exploring the
conceptual space to encounter possible ideas; transformational: transform-
ing the conceptual space, the imposed constraints, and the encountered
ideas [10].

Within CC, games have been proposed as the optimal artifact to cre-
ate to test the creative-like abilities of a CC system, since games are
content-intensive, multi-faceted content, and should be interacted with and
experienced [25]. As described above, game content relates to the main
facets that represent any game: audio, visuals, narrative, levels, rules, and
gameplay [61]. Thus, creating systems that develop, to some extent, games
poses an interesting application and challenge for CC, which can address
some of the core questions in CC. For instance, investigating the creative
process not only to create one type of content but the arrangement of such
in a harmonious way as a team of humans creatively does, or the assessment
of such content.

Using the combinatorial creativity form from Boden, Guzdial and Riedl
proposed conceptual expansion. Conceptual expansion is an approach that
combines neural networks trained to recognize or generate specific content
to produce a combinet that could be used to recognize or generate novel
content, which lacks enough data to use it to train a new ml model [192].
Moreover, they applied their approach to the conceptual expansion of
games, with the same idea of creating novel combinations of games from
a set of models trained to produce content for specific games [82]. In the
same line, Sarkar et al. proposed the use of variational autoencoders (VAE)
to create new levels by training the VAE with game levels from Super
Mario Bros. and Kid Icarus. Through this, the VAE learns a representation
of both game levels, and using [193,194].

Moreover, Mikkulainen discuses the use of Evolutionary Computation
to achieve creative AI, which refers to the use of AI not only to create and
perform creative tasks such as generating games, but also to encounter
creative solutions to complex multidimensional problems. In his work,
he reflects on the aims of the AI field and discusses the use of search-
based approaches for exploring complex multidimensional spaces filled
with “unknown unknowns” with exciting results [195]. This is further
supported by the collection of Lehman et al. [196] that presents creative
examples by a myriad of EC researchers. Likewise, Sarkar discusses
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leveraging on creative AI techniques to approach game design, and with
such demonstrated exploratory work on how it could be achieved, and the
benefits from it [197]. Specifically, Sarkar discusses the co-design aspect
that can be enabled through creative AI techniques, which is especially
relevant for this thesis and the development of effective MI-CC systems.
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AI METHODS

This section describes the approaches relevant to the work presented
in this thesis. First, an introduction is given to the main area of the
thesis, Evolutionary Computation (EC), followed by a brief introduction
to MAP-Elites. Finally, Machine Learning (ML) is briefly introduced and
discussed.

Evolutionary Computation

Evolutionary Computation (EC) is a subfield within AI inspired on Darwin’s
theory of evolution [198] and Darwinian principles of natural selection
and evolution of population over generations to primary solve/optimize
a problem or task, with the premise of “survival of the fittest”. EC is a
family of population-based algorithms that focuses on searching a multidi-
mensional space for solutions through executing an iterative refinement
loop. The basic premise is that by having a set of individuals in an envi-
ronment to be experienced or with tasks to be solved, arises competition
that causes natural selection, which results in finding high-performing
solutions. Evolutionary Algorithm (EA) is a subset of EC, which applies a
set of evolutionary mechanisms in the refinement cycle: selection, variation
operators, evaluation, and replacement [199].

A typical EA starts by creating a set of random solutions in a multidi-
mensional space and evaluates them using some fitness function. Based
on this measurement, solutions can be sorted, and better candidates can
be selected to seed the next generation and variation operators such as
recombination or mutation can be applied to them to create a new set of
candidates, i.e., the offspring. These solutions are once again evaluated,
and compete against the current population to replace it and become part
of the next generation. This process is repeated until a solution of sufficient
quality is found, which ends the execution. In such a loop, Eiben and Smith
highlight two evolutionary mechanisms as fundamental for continuously
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(a) Genotype (b) Phenotype

Figure 1: Example of direct encoding

producing and encountering high-performing individuals and creating
diversity. The selection mechanism, which increases the pressure on se-
lecting high-performing individuals for variation that ultimately results in
increasing the quality of the population. The variation operator, which
varies individuals to produce candidate solutions, creating the necessary
diversity, and achieving novelty [199].

Moreover, under the subset of EA there exist four main variants: Genetic
Algorithms, Genetic Programming, Evolution Strategies, and Evolutionary
Programming. However, their distinction is mainly on the individuals’ en-
coding, i.e., how each individual or solution is internally represented, which
also limits what variant operators can be applied. For instance, Genetic
Algorithms use genes encoded as finite strings, while Evolution Strategies’
individuals are represented as real-valued vectors where approaches such as
Covariance Matrix Adaptation could be applied [126]. Genetic algorithms
are used for the work presented in this thesis. The content to be evolved (i.e.,
levels in a dungeon) is represented as a finite set of integers, and operators
such as mutation and recombination through crossover can be applied.

Evolutionary Algorithm Components

Representation

Individuals (i.e., solutions) within a population have two representations:
genotypes and phenotypes. Genotype is the individual’s internal represen-
tation within the EA, while Phenotype is the “translation” of the genotype
when acting in the environment. For instance, human genotypical represen-
tation is the DNA (genotype), while the body, brain, organs, etc. are the
phenotypical representation. Such representation and translation are also
called encoding, which can fluctuate from direct to indirect encoding.
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Direct encoding refers that the genotype is mapped bit-by-bit to the
phenotype. In contrast, indirect encoding refers to the opposite, the genotype
is minimally encoded, and its representation does not match the phenotype.
For instance, in the case of evolving tile-based rooms in a dungeon, a
direct encoding could mean that the genotype is an array with integers,
each denoting a space in the room and the corresponding tile in the
phenotype (shown in figure 1). A lesser direct encoding could have the
genotype be an array that groups together areas of the room and marks
them as specific areas, or an even lesser let it just be a ruleset (such as in
L-systems [75,200]) to create the levels. Encoding and representation of
individuals are one of the main challenges in EA since the encoding can
drastically change the evolutionary mechanisms and how the content is
generated and explored [201–203].

Evaluation

In an EA, it is usually used a fitness function to assess the population and
solutions. This estimates the quality of the solutions by testing some metrics
that estimate and rank these solutions. Fitness functions are usually context-
dependent and help solve the tasks at hand by using some representative
heuristic of the task. For instance, if evolving levels in a game, quality
can be measured based on the tile distribution or the challenge vs. reward.
However, objective-based functions might not be the best way of evaluating
content. Environments and tasks could be deceptive with a space filled
with local optima, limiting the search; or diversity among the solutions
might want to be rewarded rather than just ranking. Stanley and Lehman
discuss such challenges with objective-based functions and proposed
using divergent searches for stepping stones to solutions, with the aim of
open-endedness [204]. More work and discussion on this is presented in
section I.

Selection

Selection is used to choose the parents of the next generation of candidate
solutions; thus, it chooses which individuals variation operators will be
applied to. Selection approaches are biased towards selecting high-quality
individuals; after all, these are the ones with the best chances to generate
better candidates. However, to counter greedy strategies and avoid getting
stuck in local optima, lower-quality individuals still get a chance to be
selected (with a similar idea to tabu-search).
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Figure 2: Example of the crossover variation operator

Variation Operators

Once individuals from a population are selected, a set of variation operators
are applied to create candidates for the next generation. The operators
might be Mutation or recombination as crossover. Mutation is applied to a
single individual with the aims of varying some genes from the genotype
to create variation and diversity. For instance, if mutation is not applied,
the EA is limited to the genes encountered in the initial population; if
a key gene was not produced, the global optima might never be found.
Common mutation operators are to swap a gene for another in the genotype
or randomly change a gene for a random value. Crossover requires at least
two individuals that can, as the name indicates, cross their genes to form
new candidates. Such is exemplified in figure 2. The result of applying these
operators to the selected parents is a set of candidate solutions (offspring)
that are evaluated and compete against the current population for a place in
the next generation.

Replacement

Replacement strategies mainly focus on replacing lower-quality individuals
from the population for better candidates generated through the variation
operators, hence, “survival of the fittest”. However, as it will be explained
in section I, not all EA work the same. Some have local competition
with individuals with similar behavioral novelty [114]; other approaches
have competition among phenotypical similars to preserve innovations
encountered in the search space [205].
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MAP-Elites
Quality Diversity algorithms are a relatively new family of algorithms
that leverage the strengths of divergence and convergence search [49].
One algorithm from this family is MAP-Elites, which explores the space
yielding a collection of high-performing and diverse solutions. The main
characteristics of MAP-Elites are: 1) that it returns a collection of high-
performing yet diverse solutions to address multiple wanted behavioral
characteristics, for instance, robots that can move around and have a set of
different behaviors and characteristics [118]. 2) Using behavioral features
as dimensions and discretizing the space with cells helps the algorithm
illuminate the search space and control niches of solutions. And 3) By
using these features and cells, the algorithm is able to substantially explore
the space finding in the way a greater amount of solutions than in other
approaches. MAP-Elites has been extensively evaluated and resulted in
a far superior approach to convergence search (i.e., objective-based) or
divergence search (e.g., novelty search) alone, and other QD approaches
such as NSLC [120].

MAP-Elites, while superior to other approaches, its iterative cycle is
not that different as the one presented earlier in this chapter. The main
changes that MAP-Elites introduce are: 1) instead of having one population,
the EA uses cells; and 2) besides the fitness function to calculate the
quality of individuals, it requires a set of behavioral feature dimensions
to divide the space into cells and where individuals will be stored. In the
vanilla version of MAP-Elites, each cell contains one individual, and as
the search encounters new individuals within the same cell, the individual
with higher-quality is kept, and the other is disregarded. This way, the
algorithm is able to preserve only high-quality solutions while retaining
diverse solutions.

Moreover, the algorithm is shown in Listing 1, which first initializes
a collection of individuals evaluated with the fitness function and tested
for their behavioral features to be placed in specific cells. Then random
selection9 occurs on top of cells to pick individuals that then compete in a
classical selection strategy (e.g., comparing fitness) to produce candidate
solutions. Variation operators are applied to the selected parents, and
the offspring are evaluated with the fitness function and tested for their
behavioral features. Depending on the cell the offspring belong, they will

9Gravina et al. have experimented on using other selection approaches with beneficial and
exciting results [206]
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need to compete if occupied with the current occupant or if unoccupied,
the offspring is placed in the cell, and the cycle restarts. With such a simple
algorithm, MAP-Elites can encounter and return a collection of diverse
and high-performing individuals. Firstly, this is due to the pressure in cells
for high-performing individuals. Secondly, due to retaining individuals
in these multidimensional cells, where they might be entirely different
for another solution (e.g., have a complete different genotype) yet be as
high-performing.

Algorithm 1 Pseudocode description of the MAP-Elites Algorithm. Taken
from [120]

procedure MAP-Elites Algorithm (simple, default version)
(P ← ∅,X ← ∅)
for iter = 1→ 𝐼 do

if iter < 𝐺 then
x′← random_solution()

else
x← random_selection(X)
x′← random_variation(x)

b′←feature_descriptor(x′)
𝑝′←performance(x′)
if P(b′) = ∅ or P(b′) < 𝑝′ then
P(b′) ← 𝑝′

X(b′) ← x′

return feature-performance map (P and X)

Furthermore, MAP-Elites have become popular and attractive due to
all the abovementioned benefits and characteristics, which have not only
spread it’s use in many fields and many experiments but also sparked many
variations. The Constrained MAP-Elites by Khalifa et al. [134] is the one
this thesis relies on and has expanded. Their approach added populations
in each cell rather than individuals, preserving even more solutions, and
combined MAP-Elites with FI-2Pop, which yielded two populations per
cell, one driven by the fitness and the other driven by satisfying a set
of constraints. Through this, they applied the same process as with the
vanilla MAP-Elites but per population (i.e., feasible and infeasible), which
resulted in useful and interesting results for the generation of bullet hells
bosses.
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Machine Learning

Machine Learning (ML) is a sub-field of AI that focuses on using learning
algorithms that can learn from data and that are trained through some
strategy such as supervised learning or reinforcement learning [207].
Formally (and generally), learning in ML was operationally defined by
Mitchell [208] as: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.”

The task T in ML is not the learning per se, rather learning is the
way to attain the ability to solve the tasks. ML helps us solve complex
tasks that are deemed too complex to be solver by fixed programs such
as the creation of games [101] or playing games [209,210]. Tasks in ML
might be a classification task: what category k an input belongs [211]; a
regression task: where it is asked to predict some numerical value based
on some input; synthesis task: create new examples based on the training
samples [212]; or machine translation task: translate an input from one
language to another [213].

Moreover, performance P relates to how a learning model is assessed
to check that it is learning from experience E to tackle task T. Depending
on the type of task that the model must solve, the performance measure
would vary, as it is dependant on it, similarly as to how fitness functions are
dependant on the problem to be solved. The usual performance measures
used are accuracy and error rate. For tasks such as image generation
the inception score is normally used [214] or for machine translation the
BLEU is used to measure the quality of the translated text [215]. The key
aspect when evaluating performance in a task is that the learning model
should be tested with data it has not used for learning, thus showing the
ability of the model to solve ”unknown” tasks [207].

Furthermore, experience E is related to the data and examples provided
to the tool and what strategy is used to train a learning model. Learning
strategies in ML can be categorized in two main learning strategies:
Supervised and Unsupervised learning. However, Reinforcement Learning
(RL) has gained tremendous interest from the research community, and is
the current learning strategy that is used to solve many tasks due to the
metaphor regarding how human’s learn and the fact that the learning happens
by experiencing the environment rather than learning the data [216]. Self-
Supervised Learning (SSL) has also been gaining popularity as an approach
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to move away from traditional supervised training by not using human-
annotated dataset to learn representations of data [217].

Within Procedural Content Generation and games, ML has been increas-
ingly used, gaining popularity to generate different types of content. PCG
via ML is a prospect area that encompasses all algorithms and approaches
where the generated content is the output of models trained on existing con-
tent [101]. On the other hand, ML can take advantage of PCG approaches
that continuously create content to increase generality, as discussed by Risi
and Togelius [39]. Moreover, Liu et al. discuss the different deep learning
approaches used thus far for PCG, the open areas for research, and more
in detail on the benefit of these approaches both for the deep learning
community and the PCG community [218].
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EVOLUTIONARY DUNGEON
DESIGNER

This section presents the Evolutionary Dungeon Designer (EDD) research
tool, all its subsystems and features, and the multiple interactions between
the human designer and the computational designer. First, it describes
the tool’s objectives, the iterations it has gone through, and game design
patterns as a significant feature. Then, it presents and discusses the room
and narrative generation process, the intertwined attempts, and multiple
designer interactions. Finally, it describes the tool’s workflow and presents
some examples.

Figure 3: Main level design components in EDD. (a) Basic example room, (b) different placeable
tiles (the boss tile looks the same as the enemy tile but 3 times bigger), (c) spatial-patterns and (d)
meso-patterns

The EDD is an MI-CC system to create adventure and dungeon crawler
content, similar to the ones found in Zelda [46] or the Binding of Isaac [47].
The main feature of EDD is the collaboration between human and com-
putational designer to create levels and narrative. Within level design, the
human designer focuses on editing the room to design their goals while in
parallel, they are continuously offered a set of suggestions adapted to their
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current design. In addition, the designer’s design is continuously evaluated
for design patterns, feasibility and playability constraints, and enhanced
information of the rooms such as door safety or enemy-treasure balance.
Within narrative design, the human designer can focus on the creation of
quests and overarching narrative structures, while the computational de-
signer collaborates by suggesting quest actions and auto-completing quests,
and suggesting diverse narrative structures adapted from the designers
structure and level design constraints. Likewise, the computational designer
assesses the level design changes that might invalidate quests and change
narrative structure constraint.

The first iteration of EDD was described and presented by Baldwin et
al. [41, 219]. In their work, the aim was on creating the first steps towards
a MI-CC system that allowed the designer to create fixed-sized individual
rooms while receiving four generated rooms with diverse targets upon
request. EDD was developed further with a revamped UI, allowing the
creation of complete dungeons, and providing augmented information
on the suggestions compared to the current design [26, 220]. The next
version of EDD allows the designer to create dungeons in whatever layout
preferred, and incorporates the Interactive Constrained MAP-Elites, pro-
viding a customizable grid of suggestions steered by the selected feature
dimensions [116, 137]. Narrative aspects were included in the following
iterations. Automatic objective assessment [221] and quest creation and
generation [167,222] were included in the next iteration. Dungeons were
assessed for overarching objective placement, and designers could add dif-
ferent NPCs and quest items in their levels to couple quest actions to them,
receiving suggestions from the computational designer. Finally, the last
iteration included the creation of overarching narrative structures [168,223],
where designers could set characters, factions, conflicts, objectives, and
main or side events, while receiving suggestions in the same line as when
creating rooms using the IC MAP-Elites. All of the available views where
the designer can create content and interact with different parts of the
system are shown in figure 4. In addition, EDD now includes prototype
implementations of different designer models: the designer preference
model [224] and designer personas [186].

Level Design

Dungeons in EDD are a cyclical graph composed of interconnected rooms.
Rooms are a rectangular 𝑀 × 𝑁 grid of tiles, which might be: Floor, Wall,
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Figure 4: Workflow of the Evolutionary Dungeon Designer. (a) Shows the world view with a
prototype dungeon (papers i, ii, iii) and it’s automatically assessed objectives (paper vi). (b)
Shows the room view, the main interactive view of EDD. In this view the designer can edit their
room while the computational designer is offering suggestions for their design (papers i, ii, iii, v).
(c) Shows the QuestGram view, where designers can use their current dungeon to add different
quest actions linked to the room elements (paper vii). Finally, (d) shows the Story Designer view,
where designers can create the overarching narrative structure for their game (papers x, xi).

Treasure, Enemy, Enemy Boss, and Door (all shown in figure 3.b). Wall
tiles are obstacles that cannot be traversed by the player, while all the other
are considered passable and could be “interacted” by the player. Enemy
boss tiles are a special type of tile that occupies a 3×3 area, as its challenge
might be comparable to nine enemies, and only two at a time can co-exist
in a room. Doors cannot be placed at will by the designer but might be
added when connecting rooms in the world view.

An essential part of EDD is its use of level design patterns to hierarchically
divide a room into micro-patterns (inventorial and spatial patterns) and
their combination into meso-patterns. The level design patterns in EDD are
based on [106, 169, 225]. While EDD is an MI-CC tool to create dungeons
for adventure games, we can leverage design patterns to create a generic and
domain-independent tool. Through this, we do not need strict definitions
or constraints based on specific tiles or functionalities. Rather we rely on
patterns that can be made into specific content by the designer if needed.

The design patterns are used in two ways. First, they are used to evaluate
the designer’s design and show the designer how the system categorizes
different parts of the rooms. Second, and more important, design patterns
are used to estimate the quality of a generated room. By extracting the
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patterns of the designer’s design and evaluating the generated rooms based
on that, design patterns can be used as goals to be achieved by the generated
content. In EDD, we have defined micro-patterns as the minimum bits that
compose the room, and are divided into inventorial and spatial patterns.
Inventorial patterns are individual passable tiles, and spatial patterns, are
a combination of passable tiles and walls resulting in chambers, corridors,
and different intersections.

Meso-patterns are the next level in the design pattern hierarchy. They
are the composition of micro- and meso-patterns. The meso-patterns that
are currently implemented are (shown in figure 3.d): dead-end, ambush,
guard chamber, treasure chamber, guarded treasure.

Room Generation
The main feature of EDD is to suggest variations of the designer’s work
that are adapted to their design, interesting, and can foster the designer’s
creativity. Through this, we seek that EDD ends representing the role of a
colleague, as discussed by Lubart [48]. The suggestions use the designer’s
current room configuration as target ratios (e.g., the number of corridors,
the number of inventorial patterns, etc.) to provide adaptive suggestions.
However, due to the algorithm’s nature, the designer is also suggested
content that respects these ratios but might use them differently with a
different goal.

For instance, if the designer is creating a room with many corridors,
such as a labyrinth, they will be provided with suggestions with a similar
distribution of corridors, but utilizing the rest of space in different ways, as
shown in figure 5.

EDD uses the IC MAP-Elites (explained in detail in papers III, V) to
generate and suggest rooms to the designer. Its main features are the use
of divergent and convergent searches, the search space division into cells,
the use of behavior feature dimensions, the constrained population per cell,
and the designer’s ability to interact with it. Through this process, EDD
can provide a grid of evolved high-performing suggestions, adapted to the
designer’s current design, while representing a diverse set of solutions. For
instance, in figure 5, it is shown multiple evolutionary runs when using
the same design and the set of generated suggestions. It can be observed
that the designer is provided with a set of suggestions that retained their
expected ratios and design, but diverse enough that the designer can browse
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many different variations. It can also be observed the effect of the different
feature dimensions, as some of them do not match the expected ratios
adequately. Thus, producing bigger variations in the solutions to explore the
search space. In figure 6, it is presented an overview of the IC MAP-Elites
steps applied to the level design facet and the multiple areas designers can
interact.

(a) Example room (b) Design Patterns

(c) Meso-pattern and Leniency (d) Symmetry and Leniency

Figure 5: Example of a possible room created by a designer (a), the design patterns identified by
the system (b), and two suggestion grids presented to the designer (c and d). The rooms in both
suggestion grids, were generated using IC MAP-Elites using respectively, #meso-patterns and
leniency (c), and symmetry and leniency (d) as dimensions.

Narrative Design

Within EDD, narrative is explored in three individual components: main
and secondary objectives based on dungeon’s topology and level design
patterns (paper vi), quests based on the individual tiles (paper vii), and
overarching narrative structure (papers x, xi). These components part from
the same idea, using and leveraging patterns and structures to formalize
the generation and propose content to the designer. It is important to also
highlight that in EDD, in its current state, these narrative components are
subordinate to the level design facet. This means that changes in the rooms
and dungeon have effects in the narrative, which the computational designer
assess, informs the user of the needed changes, and aids on these changes.
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Automatic Objective Assessment
Leveraging on the dungeon’s structure and the patterns that arise from the
designers’ design for each level, we calculate possible objectives in the
dungeon. The main idea is to utilize the dungeon as much as possible, which
means that dead-end rooms without bosses would yield side objectives
for players to encourage exploration through side objectives. Likewise,
depending on the content within rooms, a room would be selected as the
main objective for players, prioritizing boss rooms and rooms farthest from
the start position.

The process is simple and asynchronous from the design tasks, but with
significant design impact. It gives insight to designers on what type of
objectives are assessed based on the rooms they are designing, and the
dungeon’s topology. However, these objectives just show the assessment
done in EDD, but have no functional use. This means that designers could
take this objective assessment, agree with it, change the design to achieve
other objectives for players, or disregard the assessment.

Quest Design
Narrative was further explored by implementing a quest editor for designers
to compose quests within EDD, called QuestGram (in paper vii). Quest-
Gram provides a new view in EDD for designers to concatenate abstract
quest actions connected to individual tiles among all the designed rooms
to design quests (a long quest sequence with implicit subquests, which was
reformulated as explicit subquests in [222]). The system also makes use of
two new tiles, quest item and quest NPC that certain quest actions can be
assigned to. For instance, “Listen” can only be associated to quest NPCs,
while “Damage” can be assigned to several tiles.

QuestGram is a mixed-initiative system within EDD that complements
EDD’s original purpose as a mixed-initiative system for level design. The
computational designer uses grammars (specifically, L-System) to propose
suggestions to the designer based on the quest they have created so far.
The grammar, quest actions that are provided to the designer, and the
type of NPC are adapted from the work by Doran and Parberry [226],
which analyzed quests in four different MMOs, and extracted their common
structure. As the designer adds quest actions and connects them to different
tiles, the computational designer continuously generate quests using the
grammar, and the ones that match the current quest are used to propose the
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next possible quest action for the designer. The designer can then either
use or disregard this suggestions. They can also request a quest action from
the system ad hoc at any position of the quest by simply clickling on it.

QuestGram is coupled to the level design facet since it requires rooms to
be designed beforehand for quest actions to be connected to some tangible
element. This means that editing the rooms by adding or removing elements
affect what quest actions can be added, and can also invalidate parts of the
quest in case of tile, doors, or room removal. Once the designer is back at
the quest view, they are showed the affected quest actions and can either
decide to manually replace, remove, or use the suggestion to readjust their
quest.

Narrative Structure Design
When creating objectives, stories, and narrative in general, we can consider
their design in a different abstraction level. Rather than defining specific
objectives, creating quests bit by bit, or coupling these elements to ac-
tual in-game elements, we can define narrative structurally, which can
describe an experience or story with an abstract representation as argued
by Barthes [227] and Szilas [228]. We can create structures using a set
of generic building blocks that when connected together define narrative
structures. This, in turn, define generic aspects of a story, leading to the
identification of events, roles, and narrative elements, without the need of
defining the plot or how they will take place.

In paper x, we introduced TropeTwist as a step towards defining and
identifying narrative structures in games. TropeTwist uses tropes extracted
from TVTropes [229] as building blocks and patterns, which can compose
together structures represented as graphs in TropeTwist. To evaluate and
analyze these structures, we defined a set of patterns that can arise from
the interconnection of tropes: micro-patterns, fundamental narrative units
in the system such as conflicts, characters, or plot devices; meso-patterns,
emerging from the combination of micro-patterns and other meso-patterns,
they denote spatial, semanctic, and usability relationships within the
narrative graph; and auxiliary patterns, used to identify structural gaps in
the graph. Patterns are evaluated based on their quality, and in turn, these
are used to evaluate the structure as a whole syntactically (i.e., coherence
and consistency) and semantically.

TropeTwist was implemented within EDD as a parallel mixed-initiative
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system called Story Designer (paper xi). Story Designer lets designers
create narrative structures in the form of narrative graphs as seen in fig. 4.d,
using TropeTwist’s building blocks while receiving suggestions adapted to
their structures. Suggestions are generated using IC MAP-Elites adapted to
generate narrative structures by evolving graph grammars (i.e., adding and
removing rules, and changing both their left- and right-hand side part of
rules). Thus, the designer can freely create their narrative graph and the
computational designer proposes a suggestion grid adapted to their graph,
akin to the level design facet.

Figure 6: IC MAP-Elites evolutionary loop showing the possible designer interactions and what
part of the loop these interaction affect

Designer Interaction

A significant feature in EDD, is the control and interaction designers have
with non-intuitive components of the algorithms. In EDD, the designer
always have influence on what the computational designer will create
either directly or indirectly. Within the level design facet, the designer can
interact with the IC MAP-Elites in four different ways: 1) Locking tiles:
A special tile that locks tiles in the room to be unchangeable (paper ii).
2) Feature dimensions: The designer can change the feature dimensions
of the IC MAP-Elites at any time, reshaping the search space (papers iii,
v). 3) Current design: The designer is indirectly in constant interaction
with the IC MAP-Elites by simply designing their room, which adapts the
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evaluation of generated solutions (paper i). 4) Designer Model: As the
designer creates their content and uses the suggestions, the system is fed
with their interactions, trying to form a model of their preferences (paper
iv) and a style and goal model based on their associated designer personas
(paper ix).

Within the narrative facet, the designer can interact with it by controlling
or influencing the respective algorithm such as the IC MAP-Elites when
designing narrative structures or quests, and with the facet itself based on
their level design. Concretely, the designer can interact with the algorithms
within the facet in two ways: 1) Developing Quest: As the designer adds
or remove quest actions, the computational designer provides “next quest
action” suggestions based on the quest up to the selected quest action by the
designer (paper vii). 2) Feature dimensions and narrative structure: Similar
to the level design facet, the designer can interact and change the feature
dimensions of the IC MAP-Elites when creating narrative structures and at
the same time, IC MAP-Elites constantly adapts to the designer’s narrative
structure, leveraging the design as target metric (paper xi). Further, the
designer’s level design conditions what quest actions will appear and the
validity of the quests, what objectives are assessed within the dungeon,
and constraints the search space of the IC MAP-Elites when generating
narrative structures.
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RESEARCH METHODOLOGY

This section describes the overarching research methodology, the methods
used and how they were applied, a methodological reflection, and a
discussion of other methodologies that were considered, and which are as
valid for this thesis.

To explore game design as a Human-AI collaborative task, how game
content might be generated and adapted, and how to better integrate
AI in these systems and processes, this thesis mainly follows a Design
Science Research Methodology (DSRM) [230]. DSRM aims at producing
innovative artifacts to address a set of problems, challenges, and research
questions within an area of concern. This thesis investigates this through a
mix of qualitative and quantitative methods. Qualitative methods such as
user studies, interviews, and controlled experiments, to collect data from
usability, experience, and clarity of the interaction. Quantitative methods
such as simulation and experimentation, where the goal is to evaluate
specific properties, trade-offs, and the scope of the artifacts.

Moreover, artifacts created for the purpose of creating technology-
innovation, are categorized according to DSRM in the following four types:
constructs, models, methods, and instantiations. Constructs are the symbols
and composed language to represent and define the problem and possible
solutions. Models are the representations of the problems and solutions,
which uses the previously defined constructs. Methods are the processes
that are followed to solve the represented problem. Finally, instantiations
are the final systems used to demonstrate that the other categories can be
used as solutions to address the defined problems [230]. Through the thesis,
four artifacts have been developed.

47



Evolutionary Dungeon Designer

the Evolutionary Dungeon Designer, defined as instantiation, is the
main research tool in this thesis where we can investigate game design
and multiple content creation aspects as well as the interaction between
human designer and computational designer. EDD has enough flexibility
to explore this interaction and to use it as a research tool to investigate the
performance, behavior, and usability of multiple AI techniques and models.
Thus, by developing and evaluating EDD, it is possible to support the
development and creative expression of humans, and to test systems that
aim at improving and exploring the co-creative, co-creation, and co-design
capabilities of MI-CC.

We have developed four systems that build on top of EDD to explore
this interaction. EDD main content generation area is within level design,
which is explored and developed in papers i-iii, v, vi. Within EDD, we have
also explored the generation of narrative, and its connection and usability
alongside the level design facet. Narrative is explored and implemented in
QuestGram (paper vii), TropeTwist (paper x), and Story Designer (paper
xi).

Computational Designer

The computational designer (composed of multiple AI techniques) related to
model, method, and instantiation, where each underlying AI technique is
implemented, used, and evaluated within EDD. Through this, it is explored
how different approaches affect the human-AI interaction, while aiming
towards fostering creativity, reducing workload, and creating a much tighter
Human-AI dynamic. These AI techniques range from addressing specific
challenges such as explicit controllability by human designers and their
aesthetic consideration (paper ii), to the use of quality-diversity algorithms
to generate content in different facets (papers iii, v, x, xi), to the use
of different type of grammars such as L-systems (paper viii) and graph
grammars (paper x).

Furthermore, it is relevant to explore not only what algorithms and AI
techniques are used for the Computational Designer, but also its role in the
interaction. Thus, the role of the computational designer and its agency
was preliminary explored in paper xii. We analyzed and evaluated through
a controlled experiment in the form of user study, the interaction and user
experience of the human designer when the computational designer gains
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more agency in the final design.

Temporal Expressive Range Analysis

Expressive Range Analysis (ERA) is a popular and relevant method to
evaluate content generators, since it allows the inspection of the diversity
and expressiveness of a content generator with regards to feature dimensions
and use as a comparison with other algorithms [3,142,231]. In paper viii, we
extended ERA and presented Temporal Expressive Range Analysis (TERA)
as a method to better use ERAs in interactive PCG and MI-CC systems.
TERA relates in DSRM as a method, and is proposed as a evaluation
method to analyze and assess theses interactive systems. TERAs allow
the inspection and analysis of changes in the ERA over a defined period
such as generations, design editions, or time; and how the algorithms react
and adapt to constant changes in the input. We introduced an aggregated
and non-aggregated version. Non-aggregated TERAs show the delta maps
of the generator, meaning where the generator has focused and the space
covered for a specific period part. Aggregated TERAs show the density
of generated content over all the defined period and the coverage up to
the specific period. TERAs were used in papers viii and xi to assess the
content generated with the IC MAP-Elites for game levels and narrative
structures.

Designer Personas

In this thesis, we argue about the importance of Designer Modeling in
MI-CC systems as a step towards adaptability, tailor-made experiences, and
better interactions. We approached and investigated this in papers iv and ix.
Nevertheless, in paper ix we presented and proposed an approach, related
in DSRM as a method, for a data-driven modeling of the design process,
style, and goals. This method allows for the identification of Designer
Personas as archetypical paths through a clustered design style space in the
respective design space. Designer Personas take the task of recognizing
style and adapting content towards that to a higher abstraction layer, where
both the final design and individual design edits are less relevant, and the
process and trajectory through a clustered style space based on designer’s
data is highlighted. For instance, rooms for a game like the binding of
Isaac [232] could be classified based on multiple characteristics such as
the room’s objectives regarding enemies and treasures, access to different
areas, or hidden encounter and treasures. Moreover, different designers
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could reach the same room style through different paths, where the focus
along the creation could vary. Some designers would focus on the room’s
architecture before anything else, whereas others would focus first on the
objectives a player must achieve.

Methods

All the publications included in this theses have followed some of the
possible design evaluation methods introduced by Hevner et al., which
are categorized into observational, analytical, experimental, testing, and
descriptive [230]. Thus far, the focus has been on doing analytical, experi-
mental, and descriptive methods, with a mix of quantitative and qualitative
data collection.

The systems were evaluated with analytical and experimental methods.
Analytically through a dynamic analysis to evaluate qualities such as
performance and expressiveness. Experimentally through simulation with
artificial and meaningful data to, for instance, analyze the exploration
capabilities, reactiveness, interaction, and adaptability of the algorithms.
The dynamic analysis focused on performing expressive range analysis and
temporal expressive range analysis (papers iii, v, viii, xi). The simulation
has focused on evaluating how the tool responds to different inputs and
the robustness of algorithms with noisy and unpredictable data such as
in papers iii, vii, or xi.

Moreover, controlled experiments in the form of user studies have also
been conducted to collect qualitative data on how the focus group (i.e., game
designers) experience and use the tool. Through this, informed decisions
can be taken on focus areas that might be important and relevant to explore
as shown in the results of papers i, iv, vii, ix, xii.

Finally, Hevner et al. [230] recommended the use of descriptive methods
only when innovative artifacts cannot be evaluated using any of the other
evaluation methods. Therefore, having in mind that this is still an unexplored
research area, descriptive methods such as Informed Argument are required
to build support for an artifact’s necessity, challenges, and applications. For
instance, the method and model developed in paper ix, used data from user
studies that resulted in the clsutering of the design space into design style
clusters. We further used this to explore and identify Designer Personas.
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Methodology Discussion

This thesis embraces DSRM as the principal methodology employed to
explore, analyze, and address the different artifacts and RQs. However, it is
essential to have a methodology discussion for those methodologies that
could have been as valid in the frame of this thesis, with their own set of
tradeoffs.

The field of Human-Computer Interaction (HCI) has studied for a long
time the ways interactions can be created, approached, and established
to foster, encourage, and address different functionalities and capabilities
of humans. Likewise, the interaction between humans and AI has been
the focus of much of the recent work by the community, which is now
developing further than the computer science and information system
frontiers towards intertwining with many other science fields [233].

However, these interactions, especially when the human and the AI
do not necessarily need to have asymmetric functionalities (i.e., having
an intelligent system that merely assist) and that both can participate in
reciprocal stimuli to reach a common goal, still have uncountable challenges
and questions to research and explore. This is thus, one of the motivations
behind this thesis, which in part calls for the use of a more exploratory and
holistic methodology that can then observe, analyze, model, and address
the unknown space of problems and solutions.

An exploratory methodology that could have been used is Research
through Design (RtD) [234] since, after all, the iterative design of multiple
artifacts and the investigation of how this open new spaces in the research
is important to understand those unknown spaces. RtD is a methodology
from the field of HCI, which aims at tackling “Wicked Problems” meaning
unexplored, unclear, and complex scenarios and situations that are not easily
simplified. Design Thinking is the design process used to describe RtD,
consisting of grounding, ideation, and iteration. Following the RtD method-
ology, one addresses these problems through a holistic approach with an
iterative process that reframes the problem through designing artifacts and
prototypes as a means of knowledge. The knowledge generated from these
prototypes reframes the space of problems and solutions, which in turn
provides an important opportunity for researchers on focusing in the future
state and on defining a preferred state to be achieved [235].

Moreover, Participatory Design (PD) matches as well the requirements
of this thesis, especially understanding that the research while focusing on
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the development of technological innovations and artifacts, has a human-
centered perspective [236]. PD is a methodology that involves the target user
of a specific type of design in the design and research process. Through this,
the necessities of the target user are gathered, and their visions, expertise,
and understanding are incorporated and included in the proposed solutions.
Usually, the researcher wants to explore certain aspects of an unknown
space, although it is not necessary to be unknown, together with the target
users. These users understand and manage different problems and solutions
in the design space, thus by co-designing the solution, they are involved
and are part of the solution rather than this being delivered to them [236].

These methodologies could allow the work to be, in principle, more
exploratory and letting the users actually participate in the design of the
human-AI interaction loop. However, through the methods within DSRM
and the research plan, this thesis has explored to a certain extent the
incorporation of important aspects of these methodologies. While the main
focus is on EDD to explore this interaction; throughout this thesis, multiple
prototypes and artifacts addressing the underlying AI have been developed
to explore different design capabilities and interactions that have helped
reframed problems and space of solutions, akin to RtD.

Furthermore, we have managed to evaluate qualitative aspects of the
tools and the interaction designers have with it through user studies. Thus,
from our focus groups (i.e., game designers), there are important points to
approach and address that motivates the next steps in the thesis. For instance,
in the user study done in paper i, it was a recurrent topic that designers
wanted more control over the tool and algorithms. Designers did not see a
relation between their work and what the tool offered (i.e., preserving their
design, intentions, and ideas), while of course, still expecting interesting
solutions from the algorithm. This topic, supported by previous research,
have chained a set of improvements and implementations in order to balance
the requirements from designers. For instance, in papers iv, ix, and in
general, the steps towards capturing and developing designer models to be
used as a complement evaluation in the interaction between the designer
and the artificial design, have been motivated by the struggle and balance
between controllability and expressivity.
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CONTRIBUTIONS

This section summarizes the research contributions of the publications that
this thesis compiles and unifies. First, contributions and publications are
linked to different RQs. Then, each RQ is presented and discussed from
the perspective of the different included papers’ contributions.

Table 1: Relationship between the different research questions and the publications

RQ Papers
rq i i, ii, iii, v, vii, viii, x, xi, xii
rq ii i, iv, ix, xii
rq iii iv, viii, ix
rq iii.i iv, viii ix
rq iii.ii iv
rq iv vi, vii, x, xi
rq iv.i vii, x
rq iv.ii vii, x, xi

RQ1: How can we use and integrate multiple algo-
rithms such as quality-diversity algorithms and gram-
mars into a mixed-initiative approach to help design-
ers produce high-quality content and foster their cre-
ativity while allowing them to control, to a certain ex-
tent, the generated content?

QD algorithms have been recently introduced as a family of algorithms that
leverage both convergent and divergent searches’ strengths. Specifically
using strategies that help the search explore a greater area of the space
while retaining high-performing individuals. However, how to handle these
algorithms together with a human user giving inputs, changing conditions,
and with certain goals in mind is non-trivial. Moreover, using these [and
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other] algorithms in collaboration with human users, providing control
over the algorithm’s output, is an open research area. This is mainly due
to the many non-intuitive aspects of these algorithms, such as the varia-
tion operators or the genotype-to-phenotype conversion in Evolutionary
Algorithms. Likewise, this is due to the use of design tools such as EDD
by inexperienced human users or non-programmers, and the focus of these
tools, where the human user should design their objective rather than
focusing on the algorithms.

Therefore, we have focused on giving designers control over multiple
non-intuitive aspects of the EA, specifically, the Interactive Constrained
MAP-Elites (IC MAP-Elites). In paper i and based on related work [41],
the goal was to understand and analyze what are the challenges game
designers encounter with MI systems (specifically, with EDD). This drove
the study into how to give control to users while preserving the algorithm’s
expressiveness and the use of QD algorithms as an alternative. In paper ii, it
was investigated how to give the designer explicit control over non-intuitive
strategies and parameters in an intuitive way. Specifically, what “genes”
could be selected and which not for crossover and mutation within the EA,
and as a consequence, preserve the designer’s intentions with their design.

Built on top of the Constrained MAP-Elites by Khalifa et al. [134],
in paper iii and paper v, we introduced the Interactive Constrained MAP-
Elites, the first use of MAP-Elites in a mixed-initiative setup. Through IC
MAP-Elites we added: interaction for the designer with MAP-Elites,
continuous adaptation of the generative space of the algorithm to the
ever-changing designer’s design, and a set of dungeon-like related features.
This resulted in increasing diversity in the exploration of the search space
while retaining high-performing solutions. Furthermore, it was established
control mechanisms of non-intuitive aspects of the EA for the designer
through controlling the feature dimensions that discretize the search space.
The interaction and collaborative benefits for both humans and MAP-Elites
were further explored in paper viii. Our experiments support that the human
designer’s interaction can aid the algorithm to find new areas and constant
generation of novel individuals (i.e., increase and aid its expressiveness),
and at the same time, the human designer would receive more adaptive and
tailor solutions by indirectly guiding and controlling the search.

While the aforementioned papers focused mainly on level design as-
pects, papers ix, x, xi focus on the generation of narrative elements such
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as quests (paper vii) and narrative structures (papers x, xi), and their
interconnection with level design. In paper vii, we explored the use of
quest patterns extracted by Doran and Parberry [226], in QuestGram, an
MI-CC tool implemented in EDD. In fast iterative steps, designers could
create levels and use QuestGram to create quests for the system using
abstract quest actions. The system used entirely grammars to produce
suggestions to designers, which were based on what the designer was
creating. Designers could then control the computational designer output
by requesting specific elements and could further use this when quests
became invalid due to changes in level design; then, designers could
simply resolve with the suggested action. In papers x, xi, the generation
and co-creation of narrative structures are explored. Our objective was
to explore narrative at a higher abstraction level; whereas quests provide
tangible objectives, narrative structures provide structural information on
the game, such as overarching objectives and conflicts, roles, factions, and
relevant plot events. Narrative structures are encoded as graphs, and the
computational designer uses the IC MAP-Elites to search graphs generated
using graph grammars. Similar to papers iii, v, viii, the designer can guide
and control the algorithm with their current graph while also constraining
the search with level design elements.

Finally, in paper xii we explored the impact of AI agency in MI-CC
systems. Human Designers and Computational Designers are progressively
losing and gaining agency, respectively, over the final design. Our prelimi-
nary results indicate that losing control over the AI, which as an indirect
consequence, takes the initiative over the design’s goal, and that this is
not aligned with their view, frustrated most designers. Our goal was to
investigate if, by giving more control to the computational designer and
constraining the design space, the human designers’ creativity could be
fostered to overcome these constraints [10,237,238]. Our approach then
becomes a naive baseline to use as a comparison when further investigating
how to vary human-AI collaborative capabilities to achieve goals and tasks,
and foster human abilities.
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RQ2: How can we use player and designer data to
better understand their behaviors and procedures to
enhance and adapt Mixed-Initiative Co-Creative sys-
tems?

Mixed-Initiative Co-Creative tools such as EDD, can benefit greatly from
player and designer data. However, how to collect and use this is not
straightforward, especially when the focus is not only to analyze and
understand the user’s behavior but also to actively use the data to enhance
and adapt their experiences. For instance, player data such as where they
are observing [239] or their experience [50] can be used to model how
the end-user might perceive certain content. Designer data can be used
to understand design processes and enhance the designer’s experience
by creating designer-tailored content and by modeling common designer
practices and processes [2].

Therefore, we have delved into collecting, analyzing, and using player
and designer data, reported in papers i, iv, ix, xii. Thus far, we have
conducted four user studies with this in mind: The first, reported in paper
i, where we collected qualitative data from experienced game designers
on the interaction with EDD as a game design tool. The second user study
reported in paper iv was conducted with beginner game designers, i.e.,
first-year game design students, and consisted of a mix of quantitative
data, i.e., actions within the tool, and qualitative data, i.e., comments on
the experience and usability of the tool. The third user-study is reported
in paper ix, which consisted primarily of increasing the scope of the study
in paper iv with data from a more diverse and wider group. Finally, the
fourth user study is reported in paper xii, where we evaluated how designers
and their final design is influenced by an AI with increasing agency over
the final design.

With the data collected and the techniques employed, it was possible to
analyze certain designers’ actions and characteristics. The data collected
corresponding to the designer’s actions in paper iv and paper ix, not only
allowed us to create models representing certain designers’ procedures but
also highlighted interesting design processes. Further, the data collected in
paper xii gave us an insight into the design process of- and highlighted
constraints in the design space for both humans and AI. The results help us
understand further problems with establishing deeper collaborations with
AIs in colleague roles, which is the overarching goal within MI-CC.
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RQ3: How can we model different designers’ proce-
dures and use them as surrogate models to anticipate
the designers’ actions, produce content that better fits
their requirements, and enhance the dynamic work-
flow of mixed-initiative tools?

There is a need for the AI to recognize design and creative procedures
to have an aligned collaboration with the user. This is in order to create
adaptive experiences and to fruitfully make these experiences enable an
in-depth loop between humans and AI. Therefore, collecting designers’ data
as they worked in the tool was paramount, as described in the contributions
for RQ2. However, making use of this data into a functional model of
the designer is not trivial, as well as what to do with such models. paper
iv and paper ix explore such a paradigm, where we proposed multiple
approaches to model different but related processes. Likewise, in paper viii,
we analyze the effects for both designer and algorithm when the designer
interacts with MAP-Elites.

The approach presented in paper iv focused on creating a preference
model of the designer. This was then used to steer the generation of
suggestions into more meaningful, interesting, and preferred suggestions.
It leveraged in the IC MAP-Elites implicit relation between cells along the
behavior dimensions and the suggestion grid’s visualization. Through this,
it estimated and collected the designer’s preferences based on the current
set of suggestions. As the designer chose suggestions in the grid, an ad-hoc
preference matrix was placed, estimating each suggestion’s preference in
the grid. The estimated preference was used to compose a training set to
subsequently train-and-test a neural network representing the designer’s
preference. The network was then used in the fitness evaluation of each
new individual in the EA. The designer was then proposed a new set of
suggestions that fitted their preferences, adapting seamlessly to the designer
without interrupting their design process.

Moreover, the results from paper iv, drove the approach presented
in paper ix, which focused on creating a general offline model of design
style, specifically, when creating dungeons. To create such a model, we
conducted two user studies with a diverse group of participants, i.e.,
game design students, game industry practitioners, and AI in games
researchers. From these studies, it was used the design process of each of
the created rooms (180 unique rooms), i.e., from an empty room to it’s final
version. By clustering this design process, we were able to identify twelve
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representative clusters. Further, by analyzing the same design processes,
but in relation to the clusters rather than individual changes, we identified
four designer personas. These designer personas are archetypical paths
that most designers followed during the design process.

Both publications present examples of how multiple design processes
can be modeled as a designer model, their usability, and their impact in
the generation process. The preference model in paper iv was presented,
implemented, and tested. While the designer personas and design style
clusters in paper ix were discussed from a wider perspective on how
they could be used. Furthermore, besides aiming at modeling different
designer’s procedures, the main difference is how they are created: the
preference model is an online-personal model that uses data from single
designers. In contrast, the design style clusters and designer personas are
offline-group models created on data from a diverse and wider group. Thus,
we explored multiple paths to capture design processes and use them to
enhance design tools through both.

On the other hand, in paper viii we did not model design processes, rather
we assessed how the designer could steer and influence the computational
designer just by designing their levels. In EDD we use the designers design
steps implicitly in the search algorithm and adapt the fitness functions
towards that. This rather simplistic way of modeling their design process
is enough to steer IC MAP-Elites towards areas of interest, and adapt the
content towards the designers.

RQ3.1: What trade-offs arise from modeling and using
designer’s procedures to steer the generation of con-
tent towards personalized content?

In paper viii, we introduced TERAs as a way to study how design steps
affect the search space throughout a time period. With TERAs, we could
identify how the designer’s design affected the search space and changed
the algorithm’s focus. Our results showed that IC MAP-Elites is able
to adapt and have stable generation of content as the designer’s design
moves through the design space. However, this adaptability, while wanted,
makes the algorithm focus more on particular regions of the search space,
exploiting those for the designer to receive more relevant content, and
leaving some others unexplored. At the same time, IC MAP-Elites also
benefits by adapting to the designer, as unexplored regions that could be
deemed mutually exclusive, are fully explored once the designer is able to

58



provide examples there.

Moreover, paper iv and paper ix present novel approaches to model
specific designer procedures to create content and collaborate with designers
in a more adaptive and meaningful way. However, the application of these
models into the design process and to drive the computational designer’s
collaboration arises multiple challenges and benefits. Such trade-offs were
explored and discussed in paper iv where some of these trade-offs were
posted as three open areas for active research: 1) Dataset Creation: the
challenge on acquiring data, 2) Preference Modality: the challenge on using
representative data, and 3) System’s Training-and-Usage: the challenge to
train and use ML models dynamically or statically.

As designers use and interact with design tools, it must be decided what
type of data should be used that better represent the procedure or process
to be captured. Individual data could allow for a more adaptive experience,
but collecting data from a single designer in a single session, might not be
enough to accurately train such a model as in paper iv. In contrast, using
collective data might decrease that tailored experience, but it could point
out towards frequent processes that are simultaneously followed by several
designers as in paper ix.

Nevertheless, despite the use of collective or individual data to create
these models, the challenge remains on what data captures the different
processes faithfully. Seemingly representative data could be dependant
on other attributes, which might be or not counterproductive to collect or
analyze. In paper iv, the data used was based on the suggestion grid, which
implicitly used the cell relation of the behavior dimensions. For example,
this meant that selecting a very symmetric room as the preferred one
automatically meant that the less preferred suggestion was an asymmetric
room. For other processes, it might be simpler to match data with the
process. For instance, the design style clusters presented in paper ix were
formed using individual rooms’ design process. However, each designer’s
design process is different and still presents many unknowns; thus, the
challenge of using representative data prevails.

Likewise, concept drift: the constant change in the training set for an ML
model is a major challenge in design tools, as when designers use the
tool, they have an ever-changing design process that varies greatly. This
was highlighted by testers in paper iv, as the computational designer’s
suggestions were not aligned with the current design, mainly because how

59



and when the model was trained. The model was trained every time the
designer chose a suggestion, and these events could be very far away from
each other. For instance, the designer starts with some goal when creating
their room, and when choosing a suggested room, they expect this to help
them reach their goal. However, their goals are by no means needed to
be taken with them to the next room. Such a challenge partly motivated
the research in paper ix. Where rather than having a model that tries to
update as the designer traverses through the generative space, the space is
already clustered, and models do not update with the designer. Through
this approach, we aimed at clustering the designer’s design in an already
clustered design style space. Through this, they could be provided with
adaptive experiences as the computational designer could make informed
decisions based on where the designer’s design is and where is headed.

RQ3.2: What constraints are created over the genera-
tive process when using designer models?

Regardless of these trade-offs, using designer modeling impose implicit
constraints in the generative system similar to any other system that adapts
its functionality to satisfy a set of constraints. These constraints act as a
set of guidelines to help the generative process select more appropriated
suggestions such as in paper iv, or to indicate possible steps the designer
might take as in paper ix. However, having these constraints also limits, to
some extent, the generative space and expressive range of the AI. In paper
iv, this was explored by using the preference model as part of the weighted
sum of the fitness function to infer if a generated room might be preferred.
Through this, the EA evaluated the generated content objectively through
the fitness function, and subjectively through the preference model. If using
an accurate model, the designer could receive suggestions aligned with
their preference. This could mean that the generation would focus on some
specific area of the generative space with the possibility of limiting both
the creativity of the computational designer and fostering the designer’s
creativity.

RQ4: How can level design and narrative interact, act
as constraints, be intertwined, and in general, have an
active role affecting each other to produce a holistic
system?

Level design and narrative are two facets that are continuously linked [63–
65]. Not only because of their importance for players but due to the role
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that they have and play in each other’s output and human perception. The
designer’s creations as constraints to generative models and algorithms
within their respective facets are explored in RQ1 and the designer models’
constraints in the generation in RQ3. In RQ4, we are interested in the role
that other content representations and facets have as constraints for the
generation of “unrelated” content, e.g., the level design in narrative design.
We investigated this by developing parallel systems such as EDD (papers i,
ii, iii), QuestGram (paper vii) or TropeTwist (paper x), that then could be
intertwined (paper xi).

Furthermore, within Holistic PCG, we explored how and what level
design aspects, either indirectly or directly, and implicitly or explicitly,
could have a role in narrative. In paper vi, we considered the existing
patterns in levels and the dungeon’s structure to automatically assess the
main and side objectives in the game. This means that designers could
control [indirectly] the objectives with their level design. In paper vii
and further explored in [222], designers had direct control over objectives
and quests that would exist within EDD using abstract quest actions and
dependant on the level design elements. Designers could add NPCs, quest
items, and the rest of the elements, which could be used to create quests. Any
addition or removal when designing the dungeon would alter the possible
quests. paper x and paper xi explored the creation of narrative in a higher
abstraction layer. Instead of defining plots, quests, or stories, designers
could shape and design narrative structures. Similar to QuestGram, level
design elements could be used to constraint these structures and their
generation as shown in paper xi.

RQ4.1: What are the factors to be considered when im-
plementing such a paradigm and system in a mixed-
initiative application, where a designer will be able to
interact with the content?

paper vii and paper xi present approaches where narrative and level design
is implemented, exemplified and tested in a mixed-initiative system. These
systems, QuestGram and Story Designer, respectively, are preliminary steps
towards holistic mixed-initiative systems, where designers can interact with
EDD and design parts of both facets. However, as the designer creates these
facets, it becomes important what content is used, how it is represented,
and how changing it could affect the other facet.

In paper vii, we explored the iterative loop of designing both facets,
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where altering the level design had a direct effect on the created quest. How
changes in the level design affect the quests might not be straightforward,
especially when constantly iterating between both. Thus, we emphasized
the communication of how these changes affected the quest, either because
elements were removed or paths were blocked, which in turn showed to
the designer what quest actions were affected. The designer could then
manually change them or use one of the proposed suggestions to fix the
quest for them. In paper xi, Story Designer was proposed as an MI-CC
tool to build narrative structures using TropeTwist and EDD as foundations.
Through four controlled studies using simulated data, we explored how
level design data could be used to constrain the generated suggestions.
Level design data was used to limit the quantity and roles to appear in the
final generated and suggested narratives (i.e., how many villains, heroes,
and plot devices). Thus, communication about how elements are interpreted
is necessary, as well as investigating how the system is constrained and
how to show these constrained spaces to designers. In Story Designer,
it was chosen to constraint the algorithm, but not the manually edited
structure. This is due to the ambiguous nature of TropeTwist, and how
quickly changes to the structure reformulate these roles and patterns, which
is visible in paper xi experiment 4.1-4.5. Thus, the computational designer
is constrained, but not the human designer. However, the computational
designer should adapt to the human structure, which could arise interesting
uses of narrative meso-patterns to overcome the imposed constraints.

RQ4.2: What are the effects of producing and using a
holistic system for the creative process of a designer,
and what challenges are imposed on computational
creativity?

There are many factors and aspects to consider when discussing holistic
PCG systems, their implementation in MI-CC systems, and how to best do
this to assess the human-AI collaboration and interaction. However, due to
the different interactions designers and computational designers have with
the content, and how the content is intertwined, it is relevant to explore the
effects and challenges for them. When designers used QuestGram (paper
vii), they reported increased creativity when using the mixed-initiative,
especially when quests became large due to, for instance, containing too
many level design elements as designers got stuck (akin to writers’ block)
and the system showed alternatives. This points towards that in the early
stages of the design, designers might not be overwhelmed with creating
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content in different facets, but as content increases, mixed-initiative systems
slowly become more relevant. This is understandable, as game facets are
usually not designed and developed by a single designer but by a team
collaborating, which is the aim of MI-CC. Given the system’s simplicity
and the use of patterns, the computational designer in QuestGram is able
to cope with these requirements. However, in Story Designer (paper xi),
rules are less clear, and we use IC MAP-Elites to search the possibility
space. We assessed, through simulations, how constraints affect the search
space, which showed similar, stable, and consistent results regardless of
constraints. This points that the task itself is hard to explore, but as shown
in paper xi experiment 4.1-4.5, and in paper viii, IC MAP-Elites benefit
from the human interaction; thus, it is a promising area to keep exploring.
We, however, hypothesize that Story Designer will create a similar situation
for designers as in QuestGram; the longer the design session, the more
relevant the mixed-initiative and the AI role will have in the design process.
This phenomenon could then be intrinsically attached to the holistic nature
of these tools, which should be considered further.
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DISCUSSION AND CONCLUSIONS

This thesis explored game design and game content creation through
human-AI collaboration. We used EDD and its extended inner systems
(QuestGram, TropeTwist, and Story Designer) to analyze and study MI
collaboration. The focus has been on developing techniques and algorithms
to investigate this interaction to highlight and argue for the benefits that can
be achieved. Specifically, mutual inspiration to explore unknown design
areas, foster the designer’s creativity, and establish adaptive experiences.

Control, Expressiveness, and Adaptability

The interaction between designers and AI arises multiple dynamic properties
such as initiative, control, and expressivity. Initiative relates to how either
agent engages in the tasks and to what extent. Control relates to the control
mechanisms enabled for either agent to direct or constrain the output of
other agents based on some criteria. Expressivity relates to the diversity of
solutions that either agent can create. A strong candidate to cope with both
the control and expressivity dynamic properties that arise in the interaction
are QD algorithms. Thus, in paper iii and paper v, it was introduced
and implemented the Interactive Constrained MAP-Elites, a variation of
the MAP-Elites algorithm. Among its features, it enabled the designer to
select feature dimensions (a key component of MAP-Elites, explained in
section I). The results from paper iii pointed towards enabling enough
control since selecting feature dimensions and their granularity changes
the search landscape and the retained solutions. However, this changes the
features a designer might be interested in but does not limit the algorithm’s
expressivity to create diverse solutions. Further, the fitness function of IC
MAP-Elites continuously adapts to the designer’s design, acting as an
indirect control mechanism.

The results from paper iii and paper v are further supported by the
results in paper viii, where the behavior and generative space of IC MAP-
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Elites were analyzed by simulating design sessions. Given that one of the
designer’s interactions is the automated adaptation of the fitness based
on the current design, we examined and evaluated how the search varied
and adapted to a design session. The results showed that the algorithm
adapts adequately, and the designer has, to a large extent, an impact on the
generative space with their design. More exciting is that IC MAP-Elites is
able to explore new areas of the space by adapting to the designer’s design.

In short, controllability, in many cases, is a competing property with
expressivity. Especially since the control and constraints imposed could
limit the expressive range for any of the constrained agents. However, in
this thesis, it is shown that QD algorithms; specifically, IC MAP-Elites,
can cope with this, showing robustness, adaptability, and stability when
interacting with it. Designers are provided with meaningful control, yet IC
MAP-Elites adapted and kept exploring vast amounts of the generative space
encountering high-performing solutions. Nevertheless, paper xii showed
the importance of agency regarding control, adaptation, and initiative for
either agent. Our preliminary results reported high frustration levels as
human designers got too constrained, losing agency and ultimately control
over the final design and objective. Constraints limit the space, and as a
consequence, they need to be overcome by discovering creative solutions.
However, the system needs to provide enough space and creative freedom
for designers to encounter these creative solutions.

Adaptive Experiences

The work in papers i, ii, iii, v, vii, xi, xii and the interest in seeking
alternative approaches to foster creativity, create adaptive experiences, and
enable more autonomy and initiative for the AI directed the research towards
designer modeling. paper iv and paper ix presented designer modeling
examples by modeling different design procedures. These could be used
as surrogate models to enhance the understanding of design processes
and the usability of design tools, such as EDD. paper iv presented a
clear artifact design used to steer the generation of new suggestions based
on the in situ created preference model. This work demonstrated the
benefits that come with integrating these models in the MI loop, such as
the possibility of seamlessly creating preferred content. However, it also
demonstrated the challenges of selecting and collecting representative data
or training-and-using models as designers develop.

Furthermore, paper ix presented the development of a novel model
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to analyze the designer’s design process, which could inform generative
processes on the designer’s style, goal, and intentions. The analysis of the
resulting clusters based on each designer’s design process resulted in the
designer personas. These designer personas were presented as archetypical
paths taken by designers through the clustered style space. Both models
allow for the analysis of design and creative processes from a higher
abstraction level rather than specific steps akin to procedural personas or
game design patterns.

These approaches toward designer modeling have shown the capabilities
of modeling several procedures and how they could be used. They also show
that design processes can be analyzed more abstractly, yielding interesting
similarities among seamlessly different designers or design processes.
Designer modeling has the possibility to create adaptive experiences for
an individual or group of designers and could enable more autonomy and
initiative for the AI. However, whereas this and its usability as surrogate
models to enhance the collaboration, interaction, and generation produce
actual benefits to the dynamic workflow of MI-CC tools remain open for
exploration as a promising area.

Towards Holistic PCG and MI-CC

In papers vii, xi, we experimented with MI-CC narrative generation where
adaptation and control were not only based on what the designer directly
created in the narrative facet but also elements from the level design
facet. QuestGram limited designers with the level design content, and the
computational designer could be used repeatedly to address level design
changes. On the other hand, Story Designer limited the computational
designer with level design constraints, but the human designer could create
freely. This could allow the human designer to be more exploratory and
possibly change constraints back to the level design while the computational
designer tries to adapt and overcome the constraints. However, this is left to
future work, where these systems should be fully integrated and evaluated
with user studies to understand the space of possibilities.

Furthermore, our approaches in connection with related work show the
possible intertwining capability of narrative and level design. For instance,
for a designer, as discussed in paper vii and in [222], it feels natural to
connect these elements in relation to objectives since these are already
there, to some extent, when designing the levels but not formalized. The
relevance of MI-CC tools is highlighted when there is a large search space,

67



including many level design elements and other elements within the facet.

Revisiting Human and AI Roles

Lubart discusses four different roles a computer might take to promote
creativity; Nanny, pen-pal, coach, and colleague [48], further discussed by
Guzdial et al. based on how designers perceived the AI collaborator [147].
These roles and how designers perceive them are essential to be explored
to be understood properly. The role given to the AI could condition
the experience and what is expected from each agent. In paper xii, we
preliminary explored the effects of the computational designer having more
agency and, thus, having more decisions as a creative colleague could
have. Our results show that more work is required, such as aligning and
recognizing the goals, objectives, preferences, and intentions of human
designers to be able to explore deeper relationships and collaborations.

Establishing different roles such as colleague and collaborator might
require some user model within the system, such as designer models [2].
Preference models [59,185] have been built based on designers’ choices and
used as surrogate models to evaluate further generated content. Similarly,
using the designers’ creation, the designers’ processes and styles could be
modeled to inform other systems and adapt the generated content [45,60,
186]. These models were explored in papers iv, ix, where preference models
and style and process models were built, respectively. The aim is to use
these models as a complement in the search to tailor the suggested content.
This would then direct the search towards areas that are not captured by the
objective function and generate more adaptive content.

Nevertheless, Human-AI collaboration is a multi-factor system, and its
properties and parameters require that we consider them holistically. Roles,
models, interactions, system goals, and purpose are some of the factors
to consider [240]. Systems like the one studied in this thesis (i.e., EDD)
are creative support tools (CST) that are meant to be used to elaborate
some output. On the other hand, CSTs could also be employed and used as
autotelic systems. Their purpose and meaning are within the tool and the
activity itself rather than the quality of the final product. Casual Creators are
such a system, where the goal is no other than exploring creativity through
cretion and short grokloops [151]. Recently, Kreminski et al. proposed
reflective creators, a particular form of autotelic CSTs, that are meant for
users to reflect on their work and creative process [241]. Recognizing
what type of CST is to be developed and tested would then specify the
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possibilities within the system and the research questions to be addressed.

To Learn or to Evolve? That is the Question

Machine Learning have shown very good and exciting results in many
areas [101,242], and different type of tasks, especially and recently using
generative models for language [243], images [244,245], or games [218].
ML has gained traction and momentum to generate content, mainly due to
advances in Deep Learning [246]. Within PCG, this has been categorized as
PCGML [101]. Techniques to generate game content using ML have been
fruitful as well. Several explored approaches could have been used and are
comparable to what is proposed in this thesis with evolutionary algorithms.
For instance, Sarkar et al. worked on a series of approaches that combine
game content from different games to produce playable levels [76,197,247].
Likewise, the works by Snodgrass et al. [95] or Guzdial et al. [82] are great
examples of just some approaches to generating content.

Nevertheless, search-based approaches and evolutionary algorithms are
still predominant within PCG [71]. While ML approaches show promising
results, they rely on [substantial] data to train these models to generate
content. This is, firstly, not a necessity for EAs, and secondly, a big
bottleneck in PCG as datasets are not widely available. The latter is
particularly true when using custom-made systems such as EDD. In paper
iv, this was part of the issue for creating accurate preference models, among
other challenges such as the quick-and-dynamic interactions (i.e., short
groklops [151]). There are, of course, approaches to subdue these problems,
such as bootstrapping [212], and this varies depending if the model is to be
trained offline or online. Another relevant point is the out-of-distribution
exploration problem that ML models encounter. If a model is trained
on a certain dataset, the model is constrained to that distribution. This
does not mean that generative models couldn’t create novel variations,
as shown by Sarkar et al. [194] with variational autoencoders (VAE) or
Generative Adversarial Networks [207]. However, the search space is
considerably reduced. It is, for all purposes, constrained to the distribution;
thus, out-of-distribution generation is a big challenge for ML and generative
models.

These two challenges are the main technical reasons we focus solely on
using evolutionary algorithms, specifically MAP-Elites. EAs can escape
the need for data and can explore the search space and generate content
out-of-distribution, or at least have a better chance for it. This is particularly
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true when using QD-algorithms, given their divergent and convergent
capabilities [49]. The complexity then resides in the formulation of an
expressive and good enough objective function. In this thesis, we approached
this by using Interactive Evolution [248], where we can leverage the human
design and extract from it qualities that the human might want from the
algorithm. In paper viii, we explore the adaptability and stability aspects
of IC MAP-Elites, and how interaction affects both the algorithm and the
designer positively. The designer is able to steer evolution and the search
for relevant content, which could be a more intuitive way to explore the
space than it would if using ML.

Many approaches blend EA and ML as well, which could have been
explored, such as [249]. This has not been fully explored and could be
a better approach to generating content. Similar to how Mixed-Initiative
systems leverage the strengths of humans and AI, ML and EA could
leverage their strengths together. Learning from data, especially the one
produced by the target group, is relevant and crucial to making systems
create more human-like content. Yet, it is as important for the algorithm to
be able to explore out-of-distribution spaces, which ML is notoriously bad
at doing. Thus, EA could explore with relative confidence these spaces. On
the other hand, and separated from PCGML; ML could be used as it is
used in this thesis (papers iv, ix), for creating user or designer models that
are used as surrogate models to evaluate content [50, 181]. These models
could then be used as objective functions or to complement it, steering the
search.
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FUTURE WORK

We can only see a short distance ahead, but we can see
plenty there that needs to be done.

Alan M. Turing, Computing Machinery and Intelligence

The work in this thesis had an ambitious overarching objective, which was
partly explored, but that revealed many more exciting areas and paths to
continue exploring.

Human-AI Collaborative Properties

This thesis has emphasized controllability as a core property in MI-CC
systems that needs to be taken into consideration. We have argued that
control can come at the expense of expressivity but with the aim of
adaptability towards the designer. Using IC MAP-Elites, we have shown
that not only expressivity does not need to be hindered by this, but that
control can be a win-win situation for both the designer and the algorithm.
However, these properties: controllability, expressivity, or adaptability,
miss much of their nuance and their usability when taken as overarching
properties. For instance, how can we calculate controllability or adaptability,
and what would that mean? What would it mean to be 30% percent adapted?
These questions highlight the problem that these properties encompass too
much meaning and require to be broken down and explored deeper. For
instance, controllability could be explored on how control varies when this
is direct or indirect; or when applied to the process, the product, or the
other agents; or how it affects and changes the role of each agent. Exploring
how these properties can be broken down and how to analyze systems
with them to move towards deeper and more developed interactions and
collaborations is an exciting open research area.
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Designer Modeling and Adaptive Experiences

Two approaches have been proposed to model different designer procedures
as designer modeling, but more work needs to be in place to operationalize
the findings and models. For instance, using and transforming the designer
personas and the design style clustering presented in paper ix into an
applicable model to study designers and their design and creative process.
Moreover, how to use these models to steer the generation of content and
create adaptive experiences remains open, as the interaction with designers
is dynamic and heterogeneous.

Another interesting future work would be to use these adaptive models to
identify and understand the designers’ intentions. By knowing the designer’s
intentions and their current design process, one could adapt and tailor the
system towards their needs. For instance, it would be important to find the
critical points in the design process where AI could need to change role,
adapt the generated content, or take more control, agency, or initiative.

Explainable AI

To establish an in-depth relationship between human and AI, trustworthiness
is also required from the AI in order to give more autonomy, responsibility,
and initiative to the AI in creative tasks. Explainable AI is a research field
that aims at increasing the transparency of AI systems, making AI systems
more accessible and more understandable [43, 44].

Zhu et al. [42] proposed the field of eXplainable AI for Designers (XAID)
as a human-centered perspective on MI-CC tools. This work discusses
three principles of mixed-initiative, explainability, initiative, and domain
overlap, where the latter focuses on the study of the overlapping creative
tasks between game designers and black-box PCG systems in mixed-
initiative contexts. Xie et al. present an example of this [250], where they
explored visualization techniques through an interactive level designer tool
called QUBE to explain and introduce machine learning principles to game
designers.

Nevertheless, given the nature of human-AI tools, such as EDD, and the
relationship that humans and AI have in these settings, explainability could
be further explored and intrinsic to the collaboration. For instance, we
observed that when using EDD, designers tested the suggestions, how
they adapted to their different content, and what are its limitations by
just designing their content and focusing on the suggestion grid. Thus,
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as designers explore and try different alternatives with these algorithms
and models, there comes the possibility of better understanding and
interpretation, which is an exciting path to explore.

Holistic Procedural Content Generation

In this thesis, we scratched the surface of holistic PCG and its imple-
mentation in MI-CC systems. Whole systems, where facets are not only
intertwined, but designers can start the design process from any of them, is
a very interesting path. If designers were able to start by designing quests
or objectives, and the system could adapt to these and generate levels or
structures to support these or vice versa, MI-CC tools would be more
aligned with how design processes start. These do not often start from the
same starting point but tend to vary, and allowing that variance might be
necessary to have different and more fruitful creative experiences. The
system would then be in accordance with both Dehn’s definition, that space
(world) is developed as post hoc justification for events by authors [66],
and with Lebowitz, that the story gives meaning to a created world [67].

Exploring Agency and Initiative in Mixed-Initiative

As paths towards adaptive experiences that recognize several designer
procedures are explored, it is expected to establish the foundations of a
deeper relationship between humans and AI. Through this thesis, control
mechanisms were given to designers while not reducing the expressiveness
of the AI. Further, examining and modeling different designer procedures,
such as their design process, style, preferences, and goals as they create
content, have enabled this thesis to explore important steps towards a mature
relationship. It is hypothesized that this is needed to create more autonomy
and initiative for the AI and to establish a trustworthy relationship between
both agents, yet, this might not be enough. This thesis barely scratched the
surface of the relationship, the possibilities that emerge with them, and the
AI’s initiative and role. In paper xii, we took the first steps toward altering
the role and agency of both humans and AI, and had interesting results
that still require much exploration. Therefore, another future direction is to
explore varying autonomy, agency, and initiative for both agents and how
that affects the interaction and design and creative process of the co-design
and MI paradigm.
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PAPER I - FOSTERING CREATIVITY IN
THE MIXED-INITIATIVE EVOLUTIONARY
DUNGEON DESIGNER
Alberto Alvarez, Steve Dahlskog, Jose Font, Johan Holmberg, Chelsi Nolasco, and
Axel Österman

ABSTRACT

Mixed-initiative systems highlight the collaboration between humans and computers
in fostering the generation of more interesting content in game design. In light of the
ever-increasing cost of game development, providing mixed-initiative tools can not
only significantly reduce the cost but also encourage more creativity amongst game
designers. The Evolutionary Dungeon Designer (EDD) is a mixed-initia-tive tool
with a focus on using evolutionary computation to procedurally generate content
that adhere to game design patterns. As part of an ongoing project, feedback from
a user study on EDD’s capabilities as a mixed-initiative design tool pointed out the
need for improvement on the tool’s functionalities.

In this paper we present a review of the principles of the mixed-initiative model,
as well as the existing approaches that implement it. The outcome of this analysis
allows us to address the appointed needs for improvement by shaping a new version
of EDD that we describe here. Finally, we also present the results from a user
study carried out with professional game developers, in order to assess EDD’s new
functionalities. Results show an overall positive evaluation of the tool’s intuitiveness
and capabilities for empowering game developers’ creative skills during the design
process of dungeons for adventure games. They also allow us to identify upcoming
challenges pattern-based mixed-initiative tools could benefit from.
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FOSTERING CREATIVITY IN THE
MIXED-INITIATIVE EVOLUTIONARY
DUNGEON DESIGNER

Introduction

Mixed-initiative systems in game content creation [1] refer to the combination of
functions produced by procedural content generation (PCG) algorithms and human
designer intentions.

In today’s design paradigm, it is a common approach to have humans and machines
collaborate to maximize creativity during the design process and thus software
have become a backbone tool for a designer to create artifacts within the areas of
architecture, consumer product and interior design. As a result, computer-aided
design (CAD) has been an important facet for design practices [2]. It could be
argued that game development is a fast growing application area for this facet.

Games are part of an evolving medium of creative expression, but limitations still
exist in regards to its design tools’ accessibility due to the fast paced life cycle and
expensive nature of game development. The rising cost in game development due
to games’ technological evolution has resulted in a push towards automatically
generated content [3–5]. Cost drivers may include multiple factors, but in the
context of work processes involving human designers and artists, they are commonly
identified as a huge contributor, since they are expensive. Games’ complexity in
design, requires the involvement of tens to hundreds of staff across a development
period that may span for years. This can negatively affect a company’s profitability
and the development team’s innovative and creative vision.

PCG approaches and functionalities are used to reduce the workload of developers,
and to promote cooperation between humans and machines by providing more
diverse game content that could increase quality and re-playability [3, 6]. Various
development tools and level editors can be used by human designers at their
disposal, making them the sole driver of the creative process.

109



PCG, however, may limit the human designer’s intentions by strictly follow-
ing its own algorithms, disregarding the designer’s desired parameters before
generation [2]. Rather than simply being limited tools of support for the other,
mixed-initiative systems can foster co-creativity in game design by combining the
best of these two perspectives. Not only would it improve a development team’s
overall productivity, it can also guide and improve the creativity of smaller indie
teams and individuals in developing more interesting and content-rich games with
less worries about development costs [6, 7].

This paper is organized as follows: Section Related work presents the related
work in Mixed-Initiative design and the previous results of Evolutionary Dungeon
Designer, both of them as motivation for the current work. Section Improving the
Mixed-Initiative Evolutionary Dungeon Designer describes the contributions of
this paper together with a description of the last release of the tool. Section User
Study presents the results from the user study conducted with game developers,
followed by the conclusions and future work discussed in Section Results and
Discussion.

Related work

The Main Principles of Mixed-Initiative
There are two different types of mixed-initiative [1]. The first type relates to the
human creator having an idea and the computer being the mean of expression
through aiding the human in their creative task (e.g. a text editor or Photoshop).
The second type is described as the computer autonomously generating content
and being evaluated, changed and edited by a human designer. This division is
also described by [3] where they present a scale with the two extremes on opposite
ends: purely human design on one and purely computational design on the other.
In between these extremes are varying forms applied to mixed-initiative content
generation tools used for game design.

Artificial intelligence (AI) techniques have become more common and essential on
aiding designers while they develop games [8]. This motivates the use of mixed-
initiative systems, which promotes the co-creativity between human designers and
machines providing more interesting and exciting creations [2]. However, there
are still some problems when generating content, thus advocating developers still
doing manual designs from scratch. Some drawbacks of completely relying on
PCG is the low reliability, believability, and high predictability of the game content
- all which guarantees difficulties in evaluating the generated content like, for
instance, a dungeon level’s quality [9]. Therefore, by following the principles of
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mixed-initiative through combining the content generation with the guidance and
input from a human designer, you provide aspects from both parties, hopefully
limiting the weaknesses from either.

Mixed-Initiative Tools in Game Design
Recent research in the field has presented different approaches to mixed-initiative
authoring tool. These are Tanagra, CICERO and the Sentient Sketchbook. While
all these provide mixed-initiative interfaces to the designer, they also share the
limitation of addressing a specific game type.

Sentient Sketchbook aims at generating maps for strategy games such as Star-
craft [10]. Users can sketch a low-resolution map that seeds an underlying evolu-
tionary algorithm that provides suggestions. Low-resolution sketches reduce the
creative strain on the user during the design process, but also makes it easier for
the program to detect patterns in the map. Once the user deems the generated and
edited low-resolution map good enough, the program can then generate the higher
resolution map while still maintaining the patterns that were detected in the sketch.

Tanagra is used to develop 2D platformer levels [11], while still checking whether
the generated content is playable or not. Tanagra offers users an empty grid where
they can place different tiles such as floor, enemies, and coins. Mixed-initiative is
implemented so that users can select tiles and objects they want to keep in their
designs, while Tanagra generates new content around them.

CICERO focuses on the generation of dungeons for adventure games [7]. CICERO
offers users the possibility to define the behavior of the game components they
include in their designs, such as power-ups, win and lose conditions, and collision-
triggered behavior. From these definitions CICERO recommends different game
mechanics that would suit the game, such as the optimal weapon types to include in
the game. By manually editing game content in the dungeon and having CICERO
run the game and test different element combinations, users can understand how
different layouts affect the generated gameplay.

Dungeon Design in Videogames
The dungeon is a popular level design archetype found in several popular game
genres [12, 13]. Dungeons are also popular in PCG research, where different
approaches have been presented for generating dungeon levels [1, 14–17]. These
works emphasize the importance of considering goals, missions, the narrative or
themes, visual style, and gameplay rules when designing levels, therefore they
should be taken into consideration when developing a mixed-initiative tool for
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Figure 1: The start screen lets users choose the dungeon dimensions.

content generation [9]. These factors are mostly decided by the human designer,
thus a designer has to be integrated into the dungeon generation process.

Another key aspect to dungeon generation is player progression [18]. Designers
ensure that the player’s experience throughout a level will be coherent and effective,
which will be affected by the content they create. This includes reward and challenge
balancing among the rooms in a dungeon.

The Evolutionary Dungeon Designer
Previous research presented the Evolutionary Dungeon Designer (EDD) [19,20]
as a mixed-initiative authoring tool for designing dungeon rooms for adventure
games. EDD automatically generates and suggests rooms to the user while the user
is manually designing one of them. The user either form the room from scratch
or from a previously generated suggestion. This is done by means of a FI-2Pop
GA [21], where game design patterns are used both as input parameters and as
objectives. These patterns involve micro-patterns (Enemy, Treasure, Chamber,
Corridor, Connector, Entrance, and Door) as well as meso-patterns (Ambush,
Guard Chamber, Treasure Chamber, and Guarded Treasure). EDD also
ensures that all generated rooms are playable.

Initial experiments on EDD [19] validated its PCG system in terms of fitness
optimization, pattern detection, and solution diversity, providing a sufficient level
of control to the designer. The following iteration [20] explored the capabilities of
EDD as a mixed-initiative level generator as a means of facilitating collaboration
between human designers and PCG algorithms. Among its key features, the
participants of a user study highlighted EDD as a useful framework for working
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with game design patterns in the context of search-based problems. The suggestions
were considered a good source of inspiration as well as time saving. This user study
also shaped the roadmap for future improvements on EDD. This included extending
EDD from room generation to complete dungeon generation, and preserving the
users’ designs to a higher degree in relation to both design patterns and room
aesthetics.

This version of EDD extends previous work based on the aforementioned user
study by implementing the following key improvements:

• The designer is now able to construct, develop, and edit a grid-based dungeon
of different dimensions and inter-connected rooms, in contrast to a single
room, which in turn, helps the designer on having context over their work on
individual rooms and giving them more freedom on producing variations.

• The designer receives extended information about the consequences of their
changes in individual rooms, and the differences between the current edited
room and the proposed suggestions by the EA.

• The UI has been renovated to account for the newly added features by means
of different views and options, as well as, a better structure and distribution
of the different elements in the generator.

• Navigation tools have been added within a view and between views, which
provides an overview of the dungeon, along with a better context of the edited
room.

• The EA has been updated to assess and preserve the aesthetic criteria of the
designer by means of a new capability of locking sections of an edited room
for preserving custom aesthetic structures, and by extending the evaluation
function through the measurement of symmetry and similarity in the provided
suggestions, both which are further explained in [22].

Improving the Mixed-Initiative Evolutionary Dungeon
Designer

fig. 1 shows the start screen in EDD, which starts a new workflow by prompting
users to choose the maximum number of rooms in the dungeon to be developed.
The dimensions range from 2x2 rooms up to 7x7 rooms in a square dungeon grid
(also referred as world grid). From this point, the workflow offers users three
different views: 1) a world view for dealing with aspects regarding the dungeon
as a whole; 2) a room view which places the focus in a particular room in the
dungeon; and 3) the suggestions view, which produces six different suggestions
with diverging room configurations (e.g. more corridors or more chambers) for the

113



Figure 2: Sample world view showing a 5x5 dungeon with 7 disabled rooms. User actions are
displayed in the rightmost buttons.

user to choose from. The user can freely alternate between views during the design
process. The current dungeon layout can be saved at any moment from either of
the views.

The world view (fig. 2) opens up right after the start screen, displaying a grid of
the selected size composed by a fully connected set of empty rooms (all rooms
are connected to their neighbors). The users can load a previously saved dungeon
design, skipping the start screen and resume work from the state in which the
dungeon design was saved.

From the world view users can then click and select any room to:

• disable or enable the room. Disabling makes the room inaccessible, removing
all doors from the adjacent rooms. This can be undone by clicking enable.
Single rooms that become isolated after all their neighbors have been disabled,
are automatically disabled as well. figs. 3a and 3b show two examples of
dungeons with several disabled rooms,

• get procedurally generated suggestions for that room in the suggestions view,

• load the room in the room view for manual editing.

The Suggestions View
By selecting “Start with our suggestions” in the world view (fig. 2) six uniquely
generated rooms are presented to the user in a separate window: the suggestions
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(a) (b)

Figure 3: (a) 3x3 dungeon with 2 disabled rooms and 7 empty rooms, and (b) 3x3 dungeon
completed dungeon with 3 disabled rooms.

view (fig. 4). When clicking any of the suggestions, it will replace the previously
selected room in the dungeon.

Figure 4: Six procedurally generated rooms presented to the user in the suggestions view.

A similar functionality was present in the former version of the tool, presented only
once as the start screen. Now users can freely alternate between the world and the
suggestions views, getting as many suggestions as they need, deciding whether to
start creating every room from a clean state or to get inspiration from one of the
generated rooms.
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Figure 5: The room view while editing the top-left corner in a 5x5 dungeon with seven disabled
rooms.

Suggestions preserve the door layout from the room that was selected in the world
view. The suggestions shown in fig. 4 have been created for the room selected in
fig. 2, placed in the top-left corner, and containing only two doors connecting them
to their east and south neighbor.

The Room View
Users edit single rooms in the room view (fig. 5), regardless of whether these are
new empty rooms, procedurally generated suggestions, or previously edited rooms.
The room view is an improved and extended version of the main screen in the last
version of EDD [20]. All functionalities from that version are still present: manually
editing the room by changing tiles (floor, wall, enemy, and treasure), displaying
an overlay view of the existing design patterns, and procedurally generating
suggestions based on the current edited room’s configuration.

Navigation is one of the crucial added features, allowing users to move around the
dungeon without going back to the world view. Two other options offer navigation
through the dungeon: the navigational buttons and the minimap. The navigational
buttons are displayed next to each of the edited rooms’ borders that contain a door.
Provided that the room being edited in fig. 5 is located in the top-left corner, two
navigational buttons are displayed right and below the room, respectively. Clicking
a navigational button transports the user to that room, replacing the currently edited
room with the targeted neighbor. Instead of using arrows or any other fixed picture,
these buttons preview the neighboring rooms as a hint for users to help them
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design the room currently being edited. The navigational buttons are automatically
refreshed to reflect up-to-date changes performed to the neighboring rooms.

The minimap displays a scaled-down overall picture of the whole dungeon,
highlighting the currently edited room with a yellow border. Users can navigate to
any room, which is not disabled and is displayed on the minimap by clicking on
it, replacing the current room. The buttons above the minimap allow users to go
Back To World Grid, to Update Minimap, as well as request and select procedurally
generated suggestions. The whole minimap is updated whenever the user navigates
to a different room, but if the user wants to see the last changes applied to currently
edited room reflected on the minimap, a manual refresh has to be done. This is
done to reduce the workload derived from re-rendering the minimap automatically
after every manual edition.

The generated suggestions work similarly to the previous version of EDD: four
unique maps are generated by the underlying evolutionary algorithm in four
subsequent evolutions, seeding the four initial populations with different sets of
features extracted from the edited room. Each suggestion is evolved by means of a
different fitness function, therefore addressing different goals to maximize diversity
in the provided suggestions. Clicking on a suggestion highlights it, and clicking
Apply Suggestion replaces the current room with the highlighted map. This differs
from the previous version, in which maps were applied at the moment they were
clicked on, occasionally causing work loss due to accidental replacements.

Additionally, highlighted suggestions display informative parameters below them.
These describe meaningful features of the highlighted room that are relevant to both
the human designer and the evolutionary algorithm’s fitness calculation: number
of enemies and treasures, enemy and treasure rate (in relation to floor tiles), and
entrance and treasure safety (see [19] for a detailed description). These parameters
are displayed as a comparison between their values in the edited room and in
the highlighted suggestion, showing how they would change if the suggestion is
applied.

Two checkboxes below the suggestions now offer users the possibility to ask
specifically for the provided suggestions to address symmetry and similarity
aesthetic features, respectively. By ticking the symmetry checkbox, two of the
suggestions will be generated by the evolutionary algorithm using a symmetry
fitness function, which enable the generation of symmetric rooms, (either vertically,
horizontally, or diagonally). Analogously, ticking the similarity checkbox, the other
two suggestions are generated with a similarity fitness function, which promotes
the generation of room aesthetically similar (but never equal) to the currently edited
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map. These fitness functions are presented in [22]. When both checkboxes are
unchecked, the fitness functions described in [20] are used.

User Study

A user study was conducted in order to assess the impact on the design process
caused by the improvements made to EDD. Five game developers participated in
the study, which had the following structure:

• Introduction to the purpose of the study. Participants were asked whether
they were familiar with the previous version of EDD.

• Demonstration of the tool, showcasing its workflow and features with a short
example performed over a 3x3 dungeon.

• Designing a dungeon. After the demonstration the users were tasked to design
a 3x3 dungeon within approximately 10 minutes, saving the work after that
for a later analysis and discussion conducted in a structured interview with the
participant after this phase. Two observers took notes of what the participant
was doing, providing additional data for the later analysis.

• Questionnaire. The users were asked a few questions regarding their back-
ground in game design as well as dungeon-based games. They were also
asked whether they had any previous experience with mixed-initiative tools.

• Interview. A semi-structured interview was conducted to provide data for
an analysis and discussion about the tool, and its improvements. Audio was
recorded for a later analysis.

As as result of the questionnaire, the following information was gathered from the
participants:

• User 1 has been working for more than ten years in the game industry as a data
scientist and user experience researcher. The user holds prior experience with
RPGs and dungeon crawlers, and is familiar with the terms of mixed-initiative
tools and has used The Sentient Sketchbook in the past. This user is the only
one who participated in the former user study of EDD.

• User 2 has been working for six months as a project coordinator of eSports
events and has long experience of playing dungeon crawlers and RPGs. This
user is not familiar with mixed-initiative concepts and has never used a
mixed-initiative authoring tool before.

• User 3 has been working for six years in the game industry as a user
experience researcher and a biometrics expert. The user has prior experience
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with dungeon style games, but has limited knowledge about mixed-initiative
tools.

• User 4 has been working for nine years as a senior user experience researcher
and has long experience of playing dungeon crawlers and RPGs. This
user is not familiar with mixed-initiative concepts and has never used a
mixed-initiative authoring tool before.

• User 5 has been working for three weeks as a game user researcher. This user
has no experience with dungeon crawlers and dungeon-based RPGs, and is
not familiar with mixed-initiative tools.

Results and Discussion

As with any raw qualitative data, the data collected from the user study has to go
through a condensation process in order to isolate the most relevant information that
will answer the research questions. In a blueprint provided by [23], the qualitative
data obtained has undergone four out of five stages:

• Material sourcing: an audio recording the user study, interview materials,
and the authors’ own observations.

• Transcription: combining and writing down the observations and question-
naire answers for each participant in the user study.

• Unitization: dividing the data according to the mixed-initiative features of
EDD.

• Categorization: dividing the data according to categories relevant to the
research questions while taking into consideration the principles of mixed-
initiative.

All participants in the user study perceived EDD as overall good and intuitive.
table 1 shows their general consensus of EDD’s usability and capability to foster
creativity in dungeon design. table 2 lists the participants’ most requested missing
features.

The main goal of mixed-initiative interaction pertains to the flexibility of roles
between the human and computer as a team and simplifying the general experi-
ence [24], and this was somewhat achieved by EDD. This could be proven by how
features such as suggestions and the implementation of a whole dungeon with
navigation have definitely supported the users when making decisions throughout
the design process. As a result the experience was overall simple and intuitive.
It could not be said, however, that the set goal has been fully achieved; a fully
successful mixed-initiative system emphasizes interchangeable roles of the human
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and computer while maintaining the balance between them. The participants in
the user study did not feel restricted, but they still desired more control in EDD’s
assistance in the design process, as well as different suggestions that the designer
cannot come up with themselves.

[25] provides a list of principles for mixed-initiative user interfaces which would
enhance human-computer interaction. EDD has achieved four out of twelve in
Horvitz’s list of critical factors that would make up a fully successful mixed-
initiative system:

• Developing significant value-added automation: providing an automated
solution that cannot be achieved with direct manipulation. EDD provides a
framework for the generation of complex dungeons of different sizes, together
with suggestions of similar dungeon rooms and information parameters for
these suggestions.

• Considering uncertainty about a user’s goals: taking advantage of a user’s
uncertainty in their intentions. EDD provides the choice to initialize rooms in
a dungeon with either an empty slate or from any of the generated suggestions.

• Inferring ideal action in light of costs, benefits, and uncertainties: considering
the value of an automated service in regards to the usually expected value of
taking actions. EDD’s main motivation is to significantly reduce the cost of
game design while maintaining and improving creativity, which has at least
partially been fulfilled.

• Employing dialogue to resolve key uncertainties: establishing an efficient
dialog between the human and computer when uncertainty arises while
considering the costs of potentially disrupting the user. EDD extracts and
displays relevant features in the edited and suggested rooms for the users to
guide their decisions. The minimap also fulfill parts of this role.

There are other principles which are relevant to EDD which fall in line with
the participants’ feedback. For example, some principles such as the ability to
continuously learn from the user’s input and to preserve memory of their decisions
and actions may pertain to the desired features of having more control in the
generation maps and receiving more assistance in preserving their own manual
designs for different purposes.

Conclusions and Future Work

The contributions presented in this work explore how the user interface and the
mixed-initiative aspects in the Evolutionary Dungeon Designer have been improved,
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as well as how they should be improved on further in order to increase creativity
during the dungeon design process.

The addition of the world grid provides the adoption of a new workflow, which
offers users the possibility to start designing either from empty rooms or PCG
suggestions. Various changes in the user interface were made to accommodate the
increased dungeon size. With a larger dungeon, navigation has proved to be a key
functionality, as well as giving an overview of the adjacent rooms. Now users can
get a better understanding of the context of the room currently being edited. In
conjunction with the navigation and larger dungeons, a minimap was also added
to further enhance the experience when designing a larger dungeon. Alongside
these changes, aesthetic goals have been included in the generative process. Visual
cues for room descriptors were added, so that the user can make a more informed
decision when selecting suggested maps.

Compared to its previous version, EDD further empowers the mixed-initiative
design process by providing more context, feedback, flexibility, and to some extent,
the ability to address aesthetic features in the procedural suggestions. Creativity
can directly adhere to the amount of interesting possibilities a designer can employ,
which is relevant to providing rich contexts to dungeon designs. EDD offers a
mixed-initiative experience that provides adequate flexibility for the designer’s
intentions as the results from the user study have shown.

Overall, our user study successfully shows the strengths of mixed-initiative tools
for designers but it also reveals various limitations, which should be considered by
the community when creating a mixed-initiative tool.

To a certain extent, controllability is preferred than expressivity, as the users
continuously try to impose their vision, which is a non-trivial task for automated
systems to capture, thus, the users are more likely to sacrifice to a certain degree
expressivity and exploration of the tool by gaining control over the generated
content.

The capability of proposing useful and novel suggestions is fundamental to fostering
creativity and impulses the generation of more interesting content. Moreover,
explicit information about the designers’ changes and choices is important as it
helps them understand the effect of their decisions.

Finally, this work has identified features that should still be taken into consideration
for future versions of the tool, which are shown in table 2.
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Table 1: General consensus on EDD’s features

Description Participants’ Consensus
World Grid of
the dungeon

Its purpose of establishing an illusion of a fully realized dungeon is some-
what achieved. However, limitations exist with how it defines feasibility, a
dungeon’s starting point, and the entrances, which disrupts the designers’
decisions.

World View The world view’s usefulness for the most part could not be established,
other than for the purpose of going to the suggestions view (which was
already seldom during the user study) and having a closer look at the entire
dungeon without any distractions. Some participants preferred features
to be already in the room view’s minimap, and some wanted to see more
specific functionalities within the world view itself.

Enabling and
disabling
rooms

As the user study restricted participants to create 3x3 dungeons, this
feature for the most part has been neglected. This is also in part because
of its accessibility only being in the world view, which proved to be an
inefficient view in general. However, its use for bigger dungeon sizes later
on was appreciated, especially for more intricate design purposes.

Suggestions
View

Similarly to enabling and disabling rooms, it was quite difficult to encourage
the use of this functionality due to the world view’s inefficient usability.
However, this could also be due to the dungeon’s small size, as some
participants expressed high interest in using more suggestions with larger
dungeon sizes.

Minimap
navigation

The minimap proved to be a strong tool not only for navigation purposes, but
also for supporting design decisions and choices. The directional buttons
were rarely used, but their room previews were helpful in emphasizing
the current room’s connection to adjacent rooms without looking at the
minimap. On the other hand, this lowered the usability of the world view.

Parameters The parameters were, in general, lacking. They served to be important
in decision-making when choosing a suggested map in room view, but
there were still doubts on their accuracy and sufficiency when providing
information about the generated suggestions.

Generated
maps for
suggestions in
room view

Suggestions in the room view proved to be very helpful in supporting
the whole design process as they primarily acted as inspirations for the
users. The most prominent comment among the users is the preference of
having more control on how suggestions should be generated depending
on different types of parameters.

Design
patterns

The patterns’ visualization was, in general, lacking and not self-explanatory.
Some participants have expressed interest in using patterns as a parameter
in the generation of suggestions.

Dark theme EDD’s dark theme for the user interface received a positive response as it
makes working with the program easier.
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Table 2: Participants’ most requested features

Feature Description
Design pat-
terns

Their visualization and accuracy should be improved. Other than acting as
visual guide for map information, they should be used to help generate
rooms as well. They should also be available for the entire dungeon.

Parameters They need to have more information about the specific room, and have
better visualization in order to make the designer trust their accuracy more.
The parameters should also consider the entire dungeon as a whole in
different terms such as difficulty and balance.

Generated sug-
gestions

In general, the participants want more variety and control in the generation
of suggestions using different types of parameters e.g. their degree of
similarity and fitness functions.

Redefined fea-
sibility

Eddy 3.0’s definition of feasibility should be revised which considers the
whole dungeon and its connected rooms.

World View The World View should be revised and enhanced with more special features
which would encourage users to visit it more.

World grid The computation of the whole dungeon should be improved. It should
have an option to define a starting point. Its definition of entrance doors
should be improved, as well as the calculation of distances of tile types.

Version con-
trol

Some participants want to preview suggestions within the Room View to
help their judgment and the ability to save suggestions for later use. They
also want to revert to old designs in case they have second thoughts.

Templates Some participants want the ability to save their own manual designs to be
carried over to other grids.

Automated as-
sistance

The participants in general welcome a bit more automated assistance when
doing manual designs, which can reduce clicking around the program. It
should also not be too invasive for the designer.
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PAPER II - ASSESSING AESTHETIC
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DUNGEON DESIGNER
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ABSTRACT

The Evolutionary Dungeon Designer (EDD) is as a mixed-initiative tool for creating
dungeons for adventure games. Results from a user study with game developers
positively evaluated EDD as a suitable framework for collaboration between human
designers and PCG suggestions, highlighting these as time-saving and inspiring
for creating dungeons.

Previous work on EDD identified the need of assessing aesthetic criteria as a key
area for improvement in its PCG Engine. By upgrading the individual encoding
system and the fitness evaluation in EDD’s evolutionary algorithm, we present
three techniques to preserve and account the designer’s aesthetic criteria during
the dungeon generation process: the capability of locking sections for preserving
custom aesthetic structures, as well as the measurement of symmetry and similarity
in the provided suggestions.
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ASSESSING AESTHETIC CRITERIA
IN THE EVOLUTIONARY DUNGEON
DESIGNER

Introduction

Procedural content generation (PCG) has been widely used to generate content
in games for different reasons, due to constraints in memory [1], create new
experiences for the user [2], animations [3] or more recently, to create most of the
assets [4]. Moreover, interest in PCG has increased as researchers have explored
ways to automate, reduce cost and, produce novel and interesting content, for
instance, weapons [5], levels [6], music and sound [7, 8], and even complete
commercial games [9].

Search-based procedural content generation (SBPCG) is a popular PCG approach
that uses evolutionary algorithms (EA) for guiding the content generation process
by means of evaluation functions [10]. Mixed-initiative SBPCG involves human
users in the evolutionary process so that promotes the co-creation of human and
machine-made designs [11].

Figure 1: Current version of EDD and its different components. (a) Basic room, (b) different
placeable tiles, (c) micro-patterns and (d) meso-patterns.

131



Figure 2: Different uses and possibilities that the designers can have for locking the tiles in the
Room, in order to, preserve their manual changes and diverse objectives

As discussed by [12], it is important for a mixed-initiative SBPCG approach to
evaluate the degree to which generated designs are aesthetically pleasing and
interesting to the human designer. This is stressed by the designer’s will to imprint
and preserve their custom designs on the generated content offered by the PCG
system. It is a non-trivial task to know which parts the designer wants to preserve,
as well as correctly balancing human and procedurally designed content in the
generated solutions. This motivates the work presented here, in which we address
the need for assessing aesthetic criteria by improving both: the solution encoding
mechanism and the fitness evaluation function in EDD’s evolutionary algorithm.

This paper is organized as follows: Section Related Work presents previous and
related works in mixed-initiative design. Section Assessing Aesthetic Criteria
describes in detail the contributions of this paper and presents the results from
the laboratory experiments used for validating them. Finally, Section Conclusions
and Future Work summarizes and discusses these results, as well as sets future
questions to be addressed by further research in the area of aesthetic criteria and
EDD.
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Related Work

Aesthetic criteria was specified by previous research as a key feature while evaluating
content, as it leads to the generation of more customized content in the eyes of the
human designer, whose aesthetic vision on the content is preserved [5, 13, 14].

Interactive evolutionary approaches incorporate human evaluation by allowing the
user to select, either implicitly or explicitly, the parents of the next generation of
procedurally generated individuals. In [15] system allows users to draw simple
primitive shapes to seed an evolutionary algorithm and train a neural network with
their aesthetic vision. In Galactic Arms Race [5] players preferences on the evolved
weapons is implicitly deducted from the amount time they actively select those
weapons during the gameplay.

[13], incorporated visual aesthetics as an evaluation of their generated spaceships by
calculating different aesthetic concepts: symmetry along axes, weight distribution
or design simplicity. Moreover, [16] generated levels for Mario using symmetry as
objective function, which based on their user study, were as visually pleasing as
the ones created by human designers and even more than other similar approaches.

The Evolutionary Dungeon Designer
EDD is a mixed-initiative authoring tool for generating dungeon rooms using
a feasible-infeasible two population (fi-2pop) evolutionary approach, which is
interactively evaluated and edited by a designer. The current version of EDD
consists of six different building blocks that represent floors, walls, enemies,
treasures, doors and entrances. This can be used by the user to brush paint and
compose a NxM size room which, at its minimum, must hold one of each tile. Both
the tiles and the finished room can be seen in Figure 1a) and b).

EDD takes the work presented in The Evolutionary World Designer [17] one
step further, by procedurally generating rooms and their specific content. EDD’s
EA follows the approach of [13] using the evaluation of the user to change the
internal evaluation and configuration of the system. Its fitness evaluation is driven
by the use of game design micro- and meso- patterns, as shown in Figure 1 c) and
d). A detailed description of EDD’s pattern-based fitness, genetic algorithm and
mixed-initiative approach can be found in [18] and [12].

Assessing Aesthetic Criteria

Our approach is divided in two; on one side, the algorithm implicitly has control
over different aesthetic criteria using the edited room as a base to measure symmetry
and similarity for the EA. On the other side, the designer was given control over
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Figure 3: A sample edited room (a) with its division into zones (b) based on the tiles locked by the
user. Suggestions preserve these locked tiles (c). The room and its zones are internally represented
with a tree structure (d), where the leaf nodes (green) are the valid candidates to operate within an
individual.

what they wanted to preserve by being able to select tiles in the room to be
immutable (i.e. not changeable in following generations).

Preserving Custom Aesthetic Structures
To preserve the aesthetic criteria of a designer’s edited room, we give the users the
ability to manually lock custom structures in it, preserving these in the upcoming
suggestions. This is possible by incorporating a new brush which is used as a
complementary modifier when editing the room. The designer can now lock any
range of tiles, making it possible to preserve individual tiles, shapes, patterns,
routes and even design patterns as shown in Figure 2.

The process to subdivide the room is straightforward; the designer is presented with
the room to be edited, and by using the lock brush, the room seamlessly subdivides
and creates zones, which classifies the room’s tiles into two sets: the immutable
tiles (i.e. invalid or locked) and the mutable tiles (i.e. valid or unlocked).

An individual’s genotype is now changed from a direct encoding (each tile is a
gene) to a semi-direct encoding using a tree structure, with the nodes of the tree
as different zones of the room, constructed from the mutable and immutable tiles,
and the leaf nodes, only containing sets of mutable tiles, as candidates to be used
for crossing and mutation. Figure 3 shows the room, it’s division into zones and
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Figure 4: Different types of symmetry evaluated

the tree representation used by the EA.

The advantages of this representation are that it allows the EA to reduce the search
space by only considering valid zones of the room, and improves the crossover
operator by allowing the exchange of irregular shapes between individuals along
different parts of the room.

In practice, this solution allows users to preserve any aesthetic change (either
significant or detailed) that they want to keep in further generations, while still
receiving novel suggestions created following the pattern-based fitness function.
It also means that the construction of the dungeon can be performed differently:
instead of manually editing a room first to later generate appealing solutions based
on it, the user can now start from a suggestion, selecting parts of it that look
promising that are kept through subsequent generations, until the user’s needs and
criteria are met.

Evaluating Symmetry and Similarity
While the pattern-based fitness function worked well for functionality purposes,
it did not consider nor capture any aesthetic aspects into it. Therefore, in order
to consider and preserve visual aesthetic criteria, we evaluate the rooms for
their symmetry along the X and Y axes, backslash and front slash diagonal as
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Figure 5: Each row shows three results (𝑊𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 0, 𝑊𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 = 0.2, 𝑊𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =

0.4 ) produced under the settings displayed on the rightmost column. Metrics adapted from [18].

shown in Figure 4 and calculate the similarity that subsequent individuals had in
comparison with the original edited room. For simplicity, we differentiate the room
by impassable (i.e. walls) and passable (i.e. floor, treasure and enemy) tiles.

Symmetry evaluation

To calculate the symmetry of a room we evaluate the impassable tiles of one side
against their corresponding tile on the other side for the X and Y axes and diagonals.
The highest symmetric value is then used in equation 1 to calculate the fitness.

𝑓𝑠𝑦𝑚𝑚𝑒𝑡𝑟 𝑦 =
ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙𝑢𝑒

𝑡𝑜𝑡𝑎𝑙𝑊𝑎𝑙𝑙𝑠
(1)

Equation 1 allow us to calculate symmetry while also preventing the favoring of
more walls. Once calculated, we weight the result into the individual’s fitness, and
as consequence it would favor more or less symmetric rooms and preserve the
room’s configuration as it can be seen in Figure 5.

Similarity evaluation

The similarity value between an edited room and successive evolved rooms is
calculated by comparing every tile in the original with the corresponding tile in
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Figure 6: (a) Sample original room and the evolved solutions with different 𝑖𝑑𝑒𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡 𝑦

values in order: (b) 0.95, (c) 0.90 and (d) 0.85.

subsequent individuals. Once the total amount of equal tiles is known, we calculate
the similarity percentage based on the total amount of tiles, following equation 2.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑙𝑒𝑠 − 𝑛𝑜𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑇𝑖𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑙𝑒𝑠
(2)

We introduced a second parameter called 𝑖𝑑𝑒𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, which represents how
similar we want the individuals to be. Following equation 3 we measured the error
between both similarities and used it as the similarity fitness.

𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡 𝑦 = 1 − |𝑖𝑑𝑒𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 | (3)

The result of incorporating the similarity evaluation into the final fitness is shown in
Figure 6 where is observable that depending on the 𝑖𝑑𝑒𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒
the original room goes from having a slight variation to start losing its resemblance.

Finally and expanding over the previous work on EDD [12], these calculations (i.e.
𝑓𝑠𝑦𝑚𝑚𝑒𝑡𝑟 𝑦 and 𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡 𝑦) are included into the existing fitness evaluation of an
individual as shown in equation 4. 𝑓𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑎𝑙 and 𝑓𝑠𝑝𝑎𝑐𝑖𝑎𝑙 , evaluates the overall
layout of the room, and the frequency and quality of the design patterns in the
room, respectively. An in-depth explanation of both can be found in [12].
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𝑓 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑟) = (
𝑎

10
𝑓𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑎𝑙 (𝑟) +

𝑏

10
𝑓𝑠𝑝𝑎𝑐𝑖𝑎𝑙 (𝑟)

+ 𝑐

10
𝑓𝑠𝑦𝑚𝑚𝑒𝑡𝑟 𝑦 (𝑟)) ∗ 𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡 𝑦 (𝑟)

(4)

Conclusions and Future Work

In this paper, we have presented the advancements done on EDD in relation to the
evolutionary system with different evaluations, encoding, genotype representation
and strategies that aims on preserving and consider the designer’s aesthetic criteria.

By introducing the capability of locking sections of a room, we changed the
individual’s encoding from direct to semi-direct, and in turn, offered new and easier
possibilities to perform different operations to the individuals, as well as, allowing
the designer to preserve individual tiles, shapes, routes and even design patterns.

Moreover, we successfully integrated and produced rooms evaluated on symmetry
and similarity that held the overlying structure of the micro-patterns. The added
evaluations establishes the path to preserve and consider more in-depth the
designers criteria and produce personalized work that accurately transmit the ideas
and intentions of the designer.

We aim to more throughly evaluate the system by incorporate the three techniques
into a user study, similar to the one done by [12] to validate the tool’s capacity on
assessing the designer’s criteria. It would be interesting to add more aesthetic con-
cepts to evaluate the produced content, for instance, density, simplicity, sparseness
and individuality.

The subdivision of the map could be extended to perform a parallel evolution on
the custom aesthetic structures locked by the designers and propose interesting
variations. Moreover, a zone analysis could be introduced to increase the dungeon’s
knowledge for the designer by suggesting changes to fulfill different player models,
similar to Holmgård’s approach [19], or paths and statistics. Finally, we would like
to explore different types of representations towards more generative encodings to
test, compare and measure the differences and advantages of the resulting maps.

We aim to further evaluate the system with different configurations and observe
how the different fitness functions can interact and cooperate with each other to
create more interesting content, as well as, joining both approaches for a case
study, similar to the one done by Baldwin et al [12]. It would be interesting to
continue using aesthetic concepts, for instance, density, simplicity, sparseness and
individuality, to evaluate the content

138



Further use the division of the map by performing zone analysis, which could
result on suggesting changes to the designers in order to fulfill different player
models, similar to Holmgård’s approach [19] or do a separated evolution on the
manually locked tiles providing the designers with interesting shapes and patterns.
Finally, we would like to go down the road towards more indirect encodings and
test different approaches and, compare and measure the differences and advantages
of the resulting maps.
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PAPER III - EMPOWERING QUALITY
DIVERSITY IN DUNGEON DESIGN
WITH INTERACTIVE CONSTRAINED
MAP-ELITES
Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius

ABSTRACT

We propose the use of quality-diversity algorithms for mixed-initiative game
content generation. This idea is implemented as a new feature of the Evolutionary
Dungeon Designer, a system for mixed-initiative design of the type of levels you
typically find in computer role playing games. The feature uses the MAP-Elites
algorithm, an illumination algorithm which divides the population into a number
of cells depending on their values along several behavioral dimensions. Users can
flexibly and dynamically choose relevant dimensions of variation, and incorporate
suggestions produced by the algorithm in their map designs. At the same time, any
modifications performed by the human feed back into MAP-Elites, and are used to
generate further suggestions.
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EMPOWERING QUALITY DIVERSITY
IN DUNGEON DESIGN WITH
INTERACTIVE CONSTRAINED
MAP-ELITES

Introduction

Procedural Content Generation (PCG) refers to the generation of game content
with none or limited human input [1], where game content could be anything from
game rules, quests, and stories, to levels, maps, items, and music. While PCG has
been present in some games since trailblazing games like Rogue [2] and Elite [3],
it has only been a popular academic research topic for a decade or so. Search-based
PCG means using a global search algorithm such as an evolutionary algorithm to
search content space [4].

Part of PCG’s allure is the promise to produce game art and content faster and
cheaper, as well as enabling innovative content creation processes such as player-
adaptive games [5–7], data-driven content generation [8, 9], and mixed-initiative
co-creativity [10]. Mixed-initiative co-creativity (MI-CC), a concept introduced
by Yannakakis et al. [11], refers to a creation process through which a computer
and a human user feed and inspire each other in the form of iterative reciprocal
stimuli. Some examples of this are Ropossum [12], Tanagra [13], CICERO [14],
and Sentient Sketchbook [15].

MI-CC aligns with the principles of lateral thinking and creative emotive reasoning:
the processes of solving seemingly unsolvable problems or tackling non-trivial
tasks through an indirect, non-linear, creative approach [16]. Even more, MI-CC
provides insight and understanding on the affordances and constraints of the human
process for creating and designing games [1].

A key mechanism in MI-CC approaches is to present suggestions to players, and
these suggestions must have high quality but also be sufficiently diverse. So-called
quality-diversity algorithms [17] are very well suited for this, as they find solutions
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that have high quality according to some measure, but are also diverse according
other measures. MAP-Elites [18] is a well-known algorithm of this type. Khalifa
et al. [8] presented constrained MAP-Elites, a combination MAP-Elites with the
feasible-infeasible concept from the FI2Pop genetic algorithm [19], and applied
this to procedurally generating levels for bullet hell games.

The Evolutionary Dungeon Designer (EDD) is a MI-CC tool for generating dun-
geons for adventure games using a FI2Pop evolutionary approach [20–23]. This
paper presents the Interactive Constrained MAP-Elites, an implementation of
MAP-Elites into EDD’s FI2Pop evolutionary algorithm, as well as introduces a
continuous evolution process that takes advantage of MAP-Elites multidimensional
discretization of the search space into cells. Results are analyzed and discussed
regarding the improvements on quality diversity in the procedurally generated dun-
geons, as well as the effects of continuous evolution and dimension customization
in a MI-CC approach.

Background

Dungeons
For more than 40 years, dungeons have frequently been the setting for digital games
and provided players with entertainment and excitement in particularly computer
role-playing games (CRPGs) and adventure games. It seems that dungeons, as
game settings, are as popular as ever, and shows no signs of going away [24]. We
can trace the first digital dungeons to the PLATO system back in 1975 [25,26] with
games called “pedit5” [27] and “moria”. Even though the layout of the dungeon in
“pedit5” was a fixed design, the game contained randomly generated encounters and
rewards, making it a predecessor to the more commonly known Rogue [2] which
provides the player with a new layout of the dungeon with every restart. However,
prior to Rogue, the game Beneath Apple Manor [28] made for the Apple contained
a level generator which gave the player the possibility to replay the game with a
different layout when starting the game. This feature of dungeons as “randomized
environments” is the key element in so called Dungeon Hack games [29].

With regards to CRPGs and adventure games, it should be noted that they share
the mechanisms of adventure and exploration whereas combat is more common
in CRPG [30]. Adventure games, on the other hand, more often contain puzzle
solving as a mechanism. It is perhaps not that strange that dungeons are a popular
setting for games in these genres, since they provide the following design elements:
levels (several levels are needed with diverse layout and difficulty), collectibles
(loot), boss fights, locked door and key (you need to find the key to open the
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Figure 1: Main components in EDD. (a) Basic room, (b) different placeable tiles, (c) micro-patterns
and (d) meso-patterns [21].

door), wildcard enemies (placement, type and strength), monster generators (new
monsters are generated until this mechanism is destroyed), and finally, exits and
warps (which acts as transitions to other parts indicating progress in the game) [30].

Map-Elites for illuminating search spaces
Quality-diversity algorithms are algorithms which search a space of solutions
not just for the single best solution, but for a set of diverse solutions which are
good. MAP-Elites maintains of map of good solutions [18] and is perhaps the
most well-known quality-diversity algorithm. The map is divided into a number of
cells according to one or more feature dimensions (commonly, two dimensions
are used). In each cell, a single solution is kept. At every update, an offspring is
generated based on one or more existing solutions. That offspring is then assigned
to a cell based on its feature dimensions, which might or might not be the same as
the cell(s) its parent(s) occupy. If the new offspring has a higher fitness than the
existing solution in that cell, it replaces the previous item in the cell. This process
results in a map of solutions where each cell contains the best found solution for
those particular feature dimensions.

Evolving Dungeons as a Whole, Room by Room

The Evolutionary Dungeon Designer (EDD) is a MI-CC tool that allows a human
designer to create a 2D dungeon and its composing rooms (Figure 1.a), being the
designer able to manually edit both the dungeon - by placing and removing rooms
- and the rooms - by separately editing the tiles (Figure 1.b) that compose each
room. EDD’s underlying evolutionary algorithm provides procedurally generated
suggestions, and is driven through the use of game design micro- and meso- patterns
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Figure 2: Screenshot of the dungeon editor screen in EDD, displaying a sample dungeon composed
by seven rooms. The shortest path between two given tiles is highlighted in blue. The right pane
contains all options for editing the dungeon. "M", "C", and "P" stand for "Move rooms", "Connect
rooms", and "calculate Path".

(Figure 1.c and Figure 1.d). A detailed description of all EDD’s features can be
found in [20–23].

This section presents the latest version of EDD1, which includes significant
improvements based on the outcomes from the qualitative analysis discussed
in [20]. The most significant upgrade is replacing the grid-based backbone that
represented the dungeon by a more flexible graph-based representation. A dungeon
is now a graph of interconnected rooms of any given size between 3×3 and 20×20
tiles. The smallest allowed dungeon is composed by two rooms connected once to
each other. The designer can perform the following new actions:

• adding disconnected rooms to the dungeon. Rooms may also be removed at
any time.

• connecting any pair of rooms by adding a new bi-directional connection to
the graph. Rooms interconnect from and to passable border tiles (self-loops
are not allowed). Both ends are marked with a door tile (Figure 1.b). A single
border tile can only hold one connection, implying that a room can have as
many connections as passable border tiles. Connections and rooms can be
removed at any time, and their associated doors removed with them.

1available for download at https://drive.google.com/file/d/
1lCUfc4OF7lY3vUlPzAqf7i7OUfaKQoem/view
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Figure 3: The room editor screen in EDD. The left pane contains all the options for manually
editing the room displayed at the center-left of the screen. The right section displays the procedurally
generated suggestions.

• calculating paths between any pair of passable tiles located in any connected
room. Paths are automatically calculated following one the following heuristics:
fastest returns the shortest path, rewarding returns the path that traverses the
highest number of treasure tiles, less danger provides a path with the fewest
number of enemies, whereas more danger does the opposite.

The designer is required to select one of the added rooms as the initial room, which
is the room used by the player to enter the dungeon (for the first time). This selection
can be modified unlimited times. The initial room is used by EDD to calculate the
feasibility of the dungeon. A dungeon is considered feasible when there is at least
one path between the initial room and any other passable tile in every room. Rooms
and doors that aren’t reachable from the initial room are highlighted in red, so that
they can be easily identified by the designer. This feasibility constraint ensures that
all passable tiles are accessible, avoiding the possibility of accidentally creating
unreachable areas.

The mixed-initiative workflow in EDD
The starting screen in EDD is the dungeon editor screen, shown in Figure 2. Every
new room is empty (composed solely of floor tiles) when created and is placed
detached from the dungeon graph. After manually connecting the room to the
dungeon with at least one connection, the designer has the option to populate the
room using the room editor screen (Figure 1). This screen can be reached in two
different ways:
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1. directly: by double-clicking or zooming in (by using the mouse steering wheel
or by pinching on the touchpad) on the room.

2. indirectly: by clicking on the "Start with our suggestions" button on the right
pane (Figure 2), six procedurally generated suggestions are displayed on a
separate screen. The selected suggestion is then opened in the room editor
screen.

Figure 1 shows the room editor screen displaying a sample room with the dimensions
7x5 tiles. The left pane lists all the available options for manually editing the room.
Manual editing is carried out by brush painting over the room with one of the
available tile types: floor, wall, treasure, or enemy. There are two brush sizes (single
tile, and five-tile cross shape), and control-clicking allows the designer to bucket
paint all adjacent tiles of the same type. Brush painting with the lock button on
preserves selected tiles in all the procedurally generated suggestions. A detailed
description of all the options in this pane is included in [20, 21].

The right side of the screen displays the procedurally generated suggestions, by
means of the Interactive Constrained MAP-Elites genetic algorithm (Part II). The
"Generate/Stop Suggestions" button at the bottom toggles this algorithm on and off.
Once started, the algorithm continuously populates the suggestions pane with new
optimal individuals. The evolutionary process is fed with the manually edited room,
so that every change in the room affects the generated suggestions. By clicking
on "Apply Suggestion", the manually edited room is replaced by the selected
suggestion, thus affecting the upcoming procedural suggestions. "Go To World
Grid" takes the user back to the dungeon editor screen.

Interactive Constrained MAP-Elites

EDD uses a single-objective fitness function with a FI2Pop genetic algorithm
where fitness is a weighted sum divided equally between (1) the inventorial aspect
of the rooms, which relates to the placement of enemies and treasures in relation to
doors and target ratios, and (2) the spatial distribution of the design patterns, which
relates to the distribution between corridors and rooms, and the meso-patterns that
those encompass. An in-depth explanation of EDD’s fitness function can be found
in [21, 22].

The overarching goal of MI-CC is to collaborate with the user to produce content,
either to optimize (i.e. exploit) their current design towards some goal or to
foster (i.e. explore) their creativity by surprising them with diverse proposals. By
implementing MAP-Elites [18] and continuous evolution into EDD, our algorithm
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can (1) account for the many dimensions that a user can be interested, (2) explore
multiple areas of the search space and produce a diverse amount of high-quality
suggestions to the user, and (3) still evaluate how interesting and useful the tile
distribution is within a specific room. Henceforth, we name the presented approach
Interactive Constrained MAP-Elites (IC MAP-Elites).

Illuminating Dungeon Populations with MAP-Elites
MAP-Elites explores the search space more vastly by separating certain interesting
dimensions, that affect different aspects of the room such as playability or visual
aesthetics, from the fitness function, using them to categorize rooms into niches
(cells).

Dimensions

Dimensions in MAP-Elites are identified as those aspects of the individuals that
can be calculated in the behavioral space, and that are independent of the fitness
calculation. EDD offers the designer the possibility to choose among the following
dimensions, two at a time:

Symmetry and Similarity. We choose Symmetry as a consideration of the aesthetic
aspects of the edited room since symmetric structures tend to be more visually
pleasing. Similarity is used to present the user variations of their design but
still preserving their aesthetical edits. Symmetry is evaluated along the X and
Y axes, backslash and front slash diagonal and the highest value is used as to
how symmetric a room is. Similarity is calculated through comparing tile by tile
with the target room. Formulas, information and support for both evaluations are
explained in greater details at [21], where both of them were used as aesthetic
fitness evaluations.

Number of Meso-patterns. The number of meso-patterns correlates to the type
and amount of encounters the designer wants the user to have in the room in a
more ordered manner. The considered patterns are the treasure room (tr), guard
rooms (gr), and ambushes (amb). Meso-patterns associate utility to a set of tiles
in the room, for instance, a long chamber filled with enemies and treasures could
be divided into 2 chambers, the first one with enemies and the second one with
treasures so the risk-reward encounter is more understandable for the player. Since
we already analyze the rooms for all possible patterns, the number of meso-patterns
is simply #𝑀𝑒𝑠𝑜𝑃𝑎𝑡 = 𝑡𝑟, 𝑔𝑟, 𝑎𝑚𝑏 ∈ 𝐴𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠. Equation (4) presents the
dimensional value, and since the used meso-patterns can only exist in a chamber,
we normalize by the maximum amount of chambers in a room, which are of a
minimum size of 3𝑥3, and results in 𝑀𝑎𝑥𝑐ℎ𝑎𝑚𝑏𝑒𝑟𝑠 = ⌊𝐶𝑜𝑙𝑠/3⌋ ∗ ⌊𝑅𝑜𝑤𝑠/3⌋.
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𝐷𝑚𝑒𝑠𝑜𝑃𝑎𝑡 = min
{

#𝑀𝑒𝑠𝑜𝑃𝑎𝑡
𝑀𝑎𝑥𝑐ℎ𝑎𝑚𝑏𝑒𝑟𝑠

, 1.0
}

(1)

Number of Spatial-patterns. By spatial-patterns we mean chambers (c), corridors
(cor), connectors (con), and nothing (n). We identify the number of spatial-pattern
relates to how individual tiles group (or not) together to form spatial structures in the
room. The higher the amount of spatial-patterns the lesser tiles will be group together
in favor of more individualism. For instance, a room with one spatial-pattern can be
one with no walls and just an open chamber, while a room with a higher number of
spatial-patterns would subdivide the space with walls, using tiles for more specific
patterns. Equation (5) presents how we calculate the value for such a dimension. The
number of spatial patterns is simply #𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃𝑎𝑡 = 𝑐, 𝑛, 𝑐𝑜𝑟, 𝑐𝑜𝑛 ∈ 𝐴𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠,
we then normalize it by the largest side of the room and multiply it by a constant
value, determined as 𝐾 = 4.0 through a process of experimentation since it resulted
in a good estimation of the amount of spatial patterns in the room.

𝐷𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑃𝑎𝑡 = min
{

#𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃𝑎𝑡
max {𝐶𝑜𝑙𝑠, 𝑅𝑜𝑤𝑠} ∗ K

, 1.0
}

(2)

Linearity. Linearity represents the number of paths that exist between the doors in
the room. This relates to the type of gameplay the designer would like the room to
have by the distributions of walls among the room. Having high linearity in a room
does not need to only be by having a narrow corridor between doors but could also
be generated by having all doors in the same open space (i.e. the user would not
need to traverse other areas) or by simply disconnecting all paths between doors.
Equation (6) shows the linearity calculation. Due to the use of patterns, we calculate
the paths between doors as the number of paths that exist from a spatial-pattern
containing a door to another. Finally, this is normalized by the number of spatial
patterns in combination with the number of doors and their possible neighbors.

𝐷𝑙𝑖𝑛 = 1–
𝐴𝑙𝑙𝑃𝑎𝑡ℎ𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐷𝑜𝑜𝑟𝑠

#𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑃𝑎𝑡 + #𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑃𝑒𝑟𝐷𝑜𝑜𝑟
(3)

Continuous Evolution

EDD implements continuous evolution in two ways. First, the EA constantly
updates the target room and configuration with the most recent version of the user’s
design, and once the suggestions are broadcasted, that room is incorporated without
changes to the population of individuals in the corresponding cell. Secondly, by
changing the dimension information and their granularity for the MAP-Elites,
which can be done at any given time by the designer.

152



Provided that EDD already uses a FI2Pop, we took as a starting point the constrained
MAP-Elites presented by Khalifa et al. [8], where the illuminating capabilities of
MAP-Elites explore the search space with the constraints aspects of FI2Pop. This
approach manages two different populations within each cell, a feasible and an
infeasible one. Individuals move across cells when their dimension values change,
or between the feasible and infeasible population according to their fulfillment of
the feasibility constraint.

Algorithm 2 Interactive Constrained MAP-Elites
1: procedure IC-MAP-Elites([ {𝑑1, 𝑣1 }, ..., {𝑑𝑛 , 𝑣𝑛 }])
2: 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑐𝑢𝑟𝐸𝑑𝑖𝑡𝑅𝑜𝑜𝑚 ⊲ Always in background
3: createCells( [ {𝑑1, 𝑣1 }, ..., {𝑑𝑛 , 𝑣𝑛 }])
4: for 𝑖 ← 1 to 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 do
5: add mutate(𝑡𝑎𝑟𝑔𝑒𝑡) to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

6: CheckAndAssignToCell(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
7: while true do ⊲ start continouous evo
8: for 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 1 to 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝐺𝑒𝑛 do
9: if dimensionsChanged then

10: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑃𝑜𝑝 ← 𝑐𝑒𝑙𝑙𝑠𝑝𝑜𝑝

11: createCells(𝑛𝑒𝑤𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠)
12: checkAndAssignToCell(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑃𝑜𝑝)
13: repeat [for feasible & infeasible pop.]
14: for 𝑖 ← 1 to 𝑃𝑎𝑟𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
15: 𝑐𝑢𝑟𝐶𝑒𝑙𝑙 ← rndCell(𝑐𝑒𝑙𝑙𝑠)
16: add tournament(𝑐𝑢𝑟𝐶𝑒𝑙𝑙) to 𝑝𝑎𝑟𝑒𝑛𝑡

17: 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔← crossover(𝑃𝑎𝑟𝑒𝑛𝑡)
18: checkAndAssignToCell(𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔)
19: sortAndTrim(𝑐𝑒𝑙𝑙𝑠)
20: broadcastElites() ⊲ render elites
21: 𝑝𝑜𝑝′ ← 𝑐𝑒𝑙𝑙𝑠𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

22: add mutate(𝑐𝑒𝑙𝑙𝑠𝑝𝑜𝑝) to 𝑝𝑜𝑝′

23: add 𝑡𝑎𝑟𝑔𝑒𝑡 to 𝑝𝑜𝑝′

24: checkAndAssignToCell (𝑝𝑜𝑝′)
25: sortAndTrim(𝑐𝑒𝑙𝑙𝑠)
26: procedure createCells(dimensions)
27: for each 𝑑𝑖𝑚 ∈ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 do
28: add newCell(𝑑𝑖𝑚𝑑 , 𝑑𝑖𝑚𝑣) to 𝑐𝑒𝑙𝑙𝑠

29: procedure check&AssignToCell(𝑐𝑢𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
30: for each 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∈ 𝑐𝑢𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do
31: 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑓 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)
32: 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑑 ← 𝑑𝑖𝑚(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)
33: add 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 to 𝑐𝑒𝑙𝑙𝑝𝑜𝑝 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑑)

Algorithm

The current evolutionary algorithm is depicted in Algorithm 3. Cells are first
created based on the dimensions selected by the user and proceed to initialize the
population based on the user’s design, evaluate it and assign each individual to the
corresponding cell. Before starting each generation, we check if the dimensions have
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Figure 4: Rooms at generation 2090 targeting Number of spatial-patterns (X) and Symmetry (Y).
Each cell displays (top-right) the fitness of the optimal individual in its related feasible population.

changed, and if so, recreate the cells and populate them with the previous individuals,
and proceed through the evolutionary strategies. Selection is through tournament
with a random number of competing parents and offspring are produced through
a two-point uniform crossover with a chance of mutation. Offspring are placed
in the correct cell and population after calculating their fitness and dimension’s
information. Finally, cells eliminate the low-performing individuals that over-cap
their maximum capacity. Since interbreeding is not allowed, and can only happen
indirectly (i.e. the offspring changing population and then used for breeding in
consequent generations), the strategies are repeated for each of the population.

This procedure is repeated until the user decides to stop the algorithm. Meanwhile,
the EA runs for 𝑛 generations, and once it reaches the specified limit, it broadcasts
the found elites. In order to push the exploration, we first mutate all the individuals
from all the populations and cells (while retaining the previous population), and
add them into the same pool together with the current edited room without changes.
Finally, we evaluate and assign all the individuals to the correct cells, and cells that
are over maximum capacity eliminates low-performing individuals.

Experiments

We ran a set of experiments to test the results from the IC MAP-Elites using all
possible combinations of the five available dimensions using two dimensions at a
time. All experiments were run using 13 × 7 rooms, the same room size as in The
Binding of Isaac [31], a representative example of a dungeon based adventure game.
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In each experiment, the initial population was set to 1000 mutated individuals
distributed in feasible and infeasible populations in all cells which were set to a
maximum capacity of 25 individuals each. The EA ran continuously, every 100
generations rendered the most prominent cells, and at each of the generations,
it selected 5 parents per population among the different cells. Offsprings were
produced through a two-point crossover, and were mutated with a 30% chance.

Designer Personas describes the results achieved and analyzes them in terms of
the quality diversity of the suggestions obtained, the existing correlations found
between each pair of dimensions, as well as the effects of integrating the MAP-Elites
approach into a continuously evolving environment.

Results and Discussion

Figure 3 shows a grid containing the best found suggestions at generation 2090,
while aiming for number of spatial-patterns at the X-axis and symmetry at the
Y-axis with a granularity of 5. Each cell displays the optimal individual of the
feasible population under a given pair of dimension values. The fitness score is
displayed on the cells’ top-right corner.

The fitness evaluation in IC MAP-Elites is quite lightweight in terms of compu-
tational cost, so that the grid of suggestions is completed in a matter of seconds.
This is of key importance for successfully implementing continuous evolution, so
that the influence of each manual change in the edited rooms is reflected in the
suggestions almost instantly. The feeling of immediacy is further increased through
updating cells as soon as a new optimal individual is produced and incorporated to
the cell’s underlying feasible population.

Results in Figure 3 are representative of the good quality diversity solutions
produced by EDD. The average fitness across cells is 0.872, and the highest fitness
is 0.956 (cell [0.4, 0.8]). No two rooms are the same. As intended, high levels
of symmetry are displayed in the upper rows, gradually decreasing towards the
bottom row. Similarly, rooms in the leftmost column contain lower amounts of
spatial patterns, increasing towards the rightmost column. Lower amounts of spatial
patterns translate into more open rooms with almost no corridors and one or two
large adjacent chambers (as in cell [0.2, 0.2]), as opposed to highly pattern filled
rooms that comprise intricate pathways converging at one or two small chambers
(cell [1, 0.2]). Fitness values show that some dimension combinations are harder
to optimize than others, so that the whole grid depicts a gradient landscape of the
compatibility between each pair of dimensions.

The bottom-left corner in Figure 3 shows difficulties producing symmetric rooms
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Figure 5: Rooms at generation 5303 targeting the same dimensions as in Figure 3, but with the
size 11 × 11 instead.

with low amounts of spatial patterns, as opposed to rooms with many corridors
(upper-right corner), which seem to favor the generation of symmetrical structures.
The bottom row shows that aiming for low symmetry generally produces slightly
less optimal results, whereas the top row shows that corridors are the most favorable
spatial pattern for building symmetric rectangular rooms. Additional experiments
(Figure 5) show that medium-large square rooms favor the appearance of chambers
in combination with corridors for achieving symmetric rooms, thus revealing
that squareness and size are important factors for the appearance of chambers in
symmetric rooms.

Figure 6 contains the rooms generated at generation 7088 while targeting number
of meso-patterns at the X-axis and symmetry at the Y-axis. The top-right cell is
empty because its related feasible and infeasible populations are empty, that is,
no individuals with value 1 for both dimensions have been found. The number
of empty cells in the earlier generations 3722, 3875, and 5864 were 8, 7, and
2, respectively, indicating that some dimensional values for meso-patterns and
symmetry take longer to converge. The continuous nature of IC MAP-Elites fills
out the initially empty cells while the designer works with the already generated
suggestions. The right half of the grid shows that a combination of small chambers
and short corridors favors the appearance of multiple meso-patterns, such as
treasure chambers, guarded chambers, and ambushes.

Figures 7 and 8 show how low valued linearity does not cope well with neither
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Figure 6: Rooms at generation 7088 targeting Number of meso-patterns at the X-axis and
Symmetry at the Y-axis. The top-right cell shows that no optimal room could be generated under
dimension values [1, 1].

Figure 7: Rooms at generation 12545 targeting Number of spatial-patterns at the X-axis and
Linearity at the Y-axis.

spatial- nor meso-patterns. High linearity tends to create one single pathway, either
one long corridor or a wide chamber, that connects the doors in the room. Low
linearity results in the opposite, scattering multiple small passages that increase the
connectivity between doors but do not count neither as spatial- nor as meso-patterns.

Due to its nature, the performance of similarity in combination with other dimen-
sions has been found to be very dependant on the characteristics already present in
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Figure 8: Rooms at generation 20348 targeting Number of meso-patterns at the X-axis and
Linearity at the Y-axis.

the manually edited room. I.e., if this room is already highly symmetric, EDD has
problems at preserving similarity while targeting low values of symmetry. This
behavior is reported when combining similarity with the other dimensions.

Conclusions and Future Work

We have presented the Interactive Constrained MAP-Elites, a continuous imple-
mentation of MAP-Elites into the Evolutionary Dungeon Designer, creating a
MI-CC tool where the users influence the EA through their design, as well as by
choosing which dimensions to explore and the granularity of such.

The presented approach allows the designer to have a fast interaction with the EA
through re-targeting and re-scaling the dimensions at will and at any moment. The
continuous evolution fits perfectly to the mixed-initiative approach, providing a
dynamic search that reacts on the fly to the different interactions of the user, as well
as constantly offering new suggestions accordingly. Moreover, mixed-initiative fills
the lapses between generations by inviting the designer to permeate the suggestions
with custom aesthetics, challenges, paths, and other design decisions. Results show
that this approach creates a very fluent workflow of mutual inspiration between
designer and tool, yet offering highly customized quality diversity procedural
suggestions.

Results also allowed us to study the compatibility between each pair of dimensions,
spotting existing correlations among them and with the fitness function, as well as
compatibility pitfalls that leave room for further analysis.
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We aim to validate IC MAP-Elites with a user study, as well as to explore alternatives
to visualize higher dimensions through the use of CVT-MAP-Elites [32] and Cluster
MAP-Elites [33], analyze the effect of including more dimensions, and performing
agent-based dungeon evaluation to improve the fitness calculation by incorporating
automatic gameplay data.
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PAPER IV - LEARNING THE DESIGNER’S
PREFERENCES TO DRIVE EVOLUTION
Alberto Alvarez and Jose Font

ABSTRACT

This paper presents the Designer Preference Model, a data-driven solution that
pursues to learn from user generated data in a Quality-Diversity Mixed-Initiative
Co-Creativity (QD MI-CC) tool, with the aims of modelling the user’s design style
to better assess the tool’s procedurally generated content with respect to that user’s
preferences. Through this approach, we aim for increasing the user’s agency over
the generated content in a way that neither stalls the user-tool reciprocal stimuli
loop nor fatigues the user with periodical suggestion handpicking. We describe
the details of this novel solution, as well as its implementation in the MI-CC tool
the Evolutionary Dungeon Designer. We present and discuss our findings out of
the initial tests carried out, spotting the open challenges for this combined line
of research that integrates MI-CC with Procedural Content Generation through
Machine Learning.
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LEARNING THE DESIGNER’S PREF-
ERENCES TO DRIVE EVOLUTION

Introduction

As game production grows, so does the usage of computer-aided design (CAD)
tools to develop various facets of games. CAD tools enable users to create new
content or refine previously created content with the assistance of some type of
technology that focuses on reducing the workload of the developer. Procedural
Content Generation (PCG) denotes the use of algorithms to generate different types
of game content, such as levels, narrative, visuals, or even game rules, with limited
human input [1]. Search-based PCG is the subset of techniques whose approach
generates content by using a search algorithm, a content representation mechanism,
and a set of evaluation functions to drive the content creation process towards
near-optimal solutions [2].

Mixed-initiative co-creativity (MI-CC) [3] is a branch of PCG through which a
computer and a human user create content by engaging into an iterative reciprocal
stimuli loop [4–9]. This approach addresses the design process with insight and
understanding of the affordances and constraints of the human process for creating
and designing games [10]. MI-CC helps designers to either optimize their current
design towards a specific goal (thus exploiting the search space) or foster their
creativity by proposing unexpected suggestions (exploring the search space). To
these ends, diversity has been an important feature for the research community
to focus on during the past decade, including novelty search [11], surprise [12],
curiosity [13] and, more recently, quality-diversity approaches [14].

PCG through Quality-Diversity (PCG-QD) [15] is a subset of search-based PCG,
which uses quality-diversity algorithms [16] to explore the search space and
produce high quality and diverse suggestions. MAP-Elites [17] is a successful
quality-diversity algorithm that maintains a map of good suggestions distributed
along several feature dimensions. A constrained MAP-Elites implementation was
presented by Khalifa et al. [14], combining MAP-Elites with a feasible-infeasible
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(FI2Pop) genetic algorithm [18] for the procedural generation of levels for bullet
hell games. The first implementation of a PCG-QD algorithm for MI-CC was
presented by Alvarez et al. [19], elaborating on the combined MAP-Elites and
FI2Pop approach by introducing a continuous evolution process that benefits from
the multidimensional discretization of the search space performed in MAP-Elites.

In all the above MI-CC approaches, the designers play an active role in the
procedurally generated content while struggling between the expressiveness of the
automatic generation and the control that they want to exert over it [20]. Having
this as motivation, this paper takes the work in [19] one step forward by adding
an underlying interactive PCG via machine learning algorithm [21], the Designer
Preference Model, that models the user’s design style, to be able to predict future
designer’s choices and thus, driving the content generation with a combination of
the designer’s subjectivity and the search for quality-diverse content.

Previous work

Mixed-Initiative Co-Creativity
Similar to user or player modeling, designer modeling for content creation tools
(CAD and MI-CC tools) was suggested by Liapis et al [22], where it is proposed the
use of designers models that capture their styles, preferences, goals, intentions, and
interaction processes. In their work, they suggest methods, indications, and advice
on how each part can be model to be integrated into a holistic designer model,
and how each game facet can use and benefit from designer modeling. Moreover,
in [23] the same authors discuss their implementation of designer modeling and
the challenges of integrating all together in their MI-CC tool, Sentient Sketchbook,
which had a positive outcome on the adaptation of the tool towards individual
“artificial” users.

Furthermore, Lehman et al [24] presented Innovation Engines that combine the
capabilities and advantages of machine learning and evolutionary algorithms to
produce novel 3D graphics with the use of Compositional Pattern-Producing
Networks (CPPN) evolved with MAP-Elites, and evaluated by the confidence a
deep neural network had on the models belonging to a specific object category.

Procedural Content Generation via Machine Learning
Summerville et al. [21] define Procedural Content Generation via Machine Learning
(PCGML) as the generation of game content by models that have been trained on
existing game content. The main approaches to PCGML are: autonomous content
generation, content repair, content critique, data compression, and mixed-initiative
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Figure 1: Screenshot of the dungeon editor screen in EDD, displaying a sample dungeon composed
by five rooms.

design.

In the latter case and, as appointed by Treanor et al. [25], AI may engage with a
human user participating in the creation of content, so that new gameplay emerges
from this shared construction. This emerging relationship between the user and the
AI system, when implemented through a trained machine learning algorithm, has
the potential to reduce user frustration, error, and training time. This is due to the
capacity of a machine learning solution to adapt to the design preferences of the
user that interacts with the MI-CC tool by learning from the user-generated dataset
of previous choices.

The Evolutionary Dungeon Designer
The Evolutionary Dungeon Designer (EDD) is an MI-CC tool for designers to
build 2D dungeons. EDD allows designers to manually edit the overall dungeon
and its composing rooms (see Figure 1), as well as to use procedurally generated
suggestions either as inspiration to work on or as a finished design (see Figure 2).
Both options fluently alternate during the creation process by means of a workflow
of mutual inspiration, through which all manual editions performed by the user are
fed into the underlying continuous Evolutionary Algorithm, accommodating them
into the procedural suggestions. A detailed description of EDD and its features can
be found in [20, 26–28].

Subsequent user studies [20,28] carried out with game designers on EDD raised the
following areas of improvement: (1) the designers struggled with EDD’s capability

169



of understanding the designer’s intentions and preserving custom designs; (2) the
tool was unable to generate aesthetically pleasing suggestions since the fitness
function only accounted for functionality, but not aesthetics, of design patterns; (3)
the designers wanted to keep certain manual editions from being altered by the
procedural suggestions.

With the aims of addressing these limitations as well as fostering the user’s creativity
with quality-diverse proposals, EDD was improved with the Interactive Constrained
MAP-Elites (IC MAP-Elites) [19], an implementation of MAP-Elites into the
continuous evolutionary process in EDD. With this addition, the user drives the
generation of procedural suggestions by modifying at any moment the areas of the
search space where the evolution should put the focus on. This is done by selecting
among the available dimensions: symmetry, similarity, design patterns, linearity,
and leniency. Additionally, the designers have now the chance to limit the search
space by locking map areas and thus preserving manually edited content.

This paper contributes by building on top of EDD’s IC MAP-Elites, adding a
data-driven Designer Preference Model that adapts and personalizes the design
experience, as well as balances the expressivity of the tool and the controllability
of the designer over the tool. Other researchers have pursued a similar goal by
biasing the search space through having the user perform a manual selection after
every given number of generations [11, 29, 30]. Nevertheless, this approach leads
to an increase in user fatigue by repeatedly asking for user input and thus, stalling
the evolutionary process until such input is received. Moreover, this staged process
seems incompatible with the dynamic reciprocal workflow of MI-CC tools, where
the focus is on the designer proactively creating content rather than passively
browsing a set of suggestions.

The remaining sections of the paper are structured as follows: Section 3 describes the
data-driven Designer Preference Model; Section 4 presents the initial experimental
results, and Section 5 discusses the results and future lines of research of this novel
approach.

Designer Preference Model

The Designer Preference Model is a data-driven intelligent system that learns the
user’s design style by training and testing over a continuously growing dataset
composed of the user’s actions and choices while operating EDD. The underlying
evolutionary algorithm (EA) uses this model to assess the generated suggestions
according to the predicted preference of the designer. This is a complementary
assessment to EDD’s original fitness function, which evaluates individuals first
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Figure 2: The room editor screen in EDD. The top-right pane shows the suggestions provided by
the IC MAP-Elites algorithm. Below are the six top-raked suggestions by the Designer Preference
Model. The left pane contains the manual edition features.

based on the presence and distribution of spatial and meso-patterns (Figure 3),
and then based on their degree of adaptation to the user-selected quality-diversity
dimensions [19]. The relevance of the Designer Preference Model gradually
increases over EDD’s fitness function as long as the model gains confidence in its
assessments.

Model Update and Usage
The proposed model is a relatively small neural network 𝑀 with as many input
neurons as the number of tiles composing each room, two hidden layers (100 and
50 neurons respectively), and six output neurons, one per each discrete preference
value assigned to the individuals by the designer. When the designer starts EDD, the
neural network is created with random initialization and without any prior training
(i.e. cold start). While the designer creates and modifies rooms, on the background,
the EA produces and presents individuals to the designer using the MAP-Elite’s
cells (Figure 2), while it adapts to the designer’s design. Following a proactive
learning approach [31], anytime the designer chooses one suggestion to replace
her current design, a training session is requested for a model 𝑀 with a dataset 𝑆
created with the current cells and their populations based on the designer’s chosen
suggestion. The loop, depicted in figure 4, can be described in the following two
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Figure 3: A sample room in EDD (a) compose by tiles (b), spatial patterns (c) and meso-patterns
(d). Detailed descriptions for these components can be found in [27].

steps:

Dataset creation:

The designer chooses a suggestion to replace her current design, which in turn,
requests a training session using all the current individuals (i.e. the elites and
the rest of the feasible populations) to create a new dataset to train the model
closer to the “actual” preference of the designer. As shown in figure 4.b, an ad-hoc
matrix is created, based on the position of the applied suggestion, to calculate the
estimated preference, starting with the applied suggestion (1.0 preference value),
and reducing the preference value by 0.2 per each step that was taken away from
the applied suggestion in the matrix until a minimum of 0.0.

Once all the individuals are given an estimated preference value based on their
grid position by the ad-hoc matrix, they are all used to compose a general dataset 𝑆
where each individual is transformed to match the network input. Finally, we divide
the set into a training set (90%) and test set (10%) with the same label distribution.
Through this process, we end up having a maximum of𝑀×𝑁× 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
tuples, which relates to the granularity of each presented dimension times the
maximum amount of feasible individuals per cell.

Training and usage:

The model is then trained for a limited set of epochs (i.e. 20 epochs) and later
incorporated into the evolutionary loop to further evaluate individuals. As men-
tioned above, the model tries to slowly fit towards the designer’s preference, and
as it becomes more confident in predictions, the more weight 𝑊1 it has in the
final fitness of an individual. Confidence is calculated based on the output of the
softmax layer, which limits the output of all the neurons into the range 0 to 1, as
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Figure 4: Overview of the Designer Preference Model integrated into the fitness function of EDD.
Elites are published and shown to the designer in a grid fashion (a), and once the designer chooses
and applies one of the suggestions, an ad-hoc matrix is created based on the position of the selected
suggestion to estimate the preference of suggestions (b). The ad-hoc matrix is then applied to all
the elites in the grid, and the feasible populations within the EA cells to compose a general dataset
𝑆 with rooms labeled by the estimated preference. The composed dataset 𝑆 is then subdivided into
a training set (90%) and test set (10%), both with the same label distribution (c). The dataset is
used to train a model 𝑀 , which is a relatively small neural network, for 20 epochs (d). The model
is then used to evaluate the population of the EA together with the current fitness function in a
weighted sum, with the weight of the model 𝑀 conditioned by the confidence of the network (e).
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the sum of all the neurons’ output must be 1.0. This characteristic of the softmax
layer enables us to interpret the results as the probabilities for each of the classes.
For instance, if the network predicts that an individual is going to be preferred
to the designer with a 1.0 preference with a probability of 0.9, it means that the
remaining 0.1 is distributed among the other output classes, and as a consequence,
the network has high confidence. The resulting weights (Eq. 1) and weighted sum
(Eq. 2) to evaluate each of the individuals in the EA were the following:

𝑤1 = min(𝑀𝑐𝑜𝑛 𝑓 · 𝑀𝑇𝑒𝑠𝑡 𝐴𝑐𝑐 , 0.5),

𝑤0 = 1.0 − 𝑤1
(1)

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑢𝑚 = (𝑤0 · 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒) + (𝑤1 · 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑝𝑟𝑒 𝑓 ) (2)

Finally, the loop continues and the model awaits for the next training session that
will be triggered the next time that the user applies a suggestion. In the meantime,
the trained model is used as part of the combined individual evaluation process.

Evaluation

Model performance, integration, and setup
We conducted a set of experiments to test the extent to which the Designer
Preference Model learns from the user-generated data and fits into the previously
existing MI-CC workflow in EDD. These experiments also aimed for finding the
hyperparameter configuration for the model that better suited its goals.

This resulted in a fully connected neural network with two hidden layers with
100 and 50 neurons respectively. Bigger and deeper networks, as well as longer
training epochs, did result in higher accuracy but it was not worth the time-
complexity/accuracy tradeoff since it obstructed the dynamic and high-paced
workflow of the tool. Finally, the network had six output nodes related to the
different preference values a suggestion could have (i.e. from 0.0 to 1.0 in 0.2
intervals, both ends inclusive) with a softmax layer, which was used to account for
the confidence on the network.

Additionally, we decided to train the model’s network under independent episodes
every time the designer applied a suggestion using the most up-to-date data
(the dataset that was created each time a selection was applied). We evaluated
and through experimentation later discarded a more continuous approach, since
continuously training between episodes led to the generation of large noisy datasets
that distorted the training process.
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As a result, the Designer Preference Model is smoothly integrated into EDD’s
workflow. User-wise, it runs in a completely transparent way, neither breaking
the reciprocal stimuli loop nor slowing down the performance of the EA in a
perceptible way.

User Study
A user study was also conducted to collect preliminary results that assess the
relevance of the Designer Preference Model. We aimed for gathering feedback
from game designers on how the model would be used, as well as their perception
of the adaptive capabilities of the model.

Fifteen game design students (i.e. novice designers) participated in the study; all
of them were introduced to all the features of the tool and were tasked to create a
dungeon with interconnected rooms for as long as they were satisfied with their
design. At the end of each test session, the participants were asked to fill a brief
questionnaire assessing their understanding of the suggestions, its usability, pros,
and constraints.

For the purposes of the user study and to test the new model’s assessment capabilities
in contrast to EDD’s original fitness function, we presented the suggestions as
displayed in Figure 2. The top-right pane displays EDD’s IC-MAP-Elites as
described in [19]. The bottom-right pane shows a smaller grid displaying the top
ranked individuals assessed by the Designer Preference Model. As the designer
applied the top suggestions, the lower grid would get trained with the expected
preference, as explained in section II and, as a consequence, the lower grid would
become more adapted.

This system was designed to validate the hypothesis that users would prefer to make
use of the suggestions in the bottom-right pane in the long run, after the Designer
Preference Model had been trained a sufficient amount of times, thus gaining
confidence in its assessment. A total of 105 rooms were created and the designers
applied 43 times suggestions to their designs, with most of the cases happening
once the designers had manually created most of the dungeon. Unfortunately, this
did not generate enough activity in EDD’s procedural content generation system to
be able to draw accurate conclusions from the study.

Open Problems and Future Work

This paper presents the first MI-CC tool with quality-diversity that explores the
usage of a data-driven designer preference model, and its implementation into the
EA loop as a complementary evaluation of individuals. Through this model, we
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searched to cope with some of the limitations presented in previous work, mainly,
the user fatigue when queried to choose solutions for the EA, and the stalling of
the evolutionary process, thus, adapting the control of the user in the search-space
to the dynamic workflow of MI-CC tools.

In this section, we present the multiple challenges that arose when trying to use
the designer preference model from our first experiments and preliminary study
and the open areas for active research. Through our user study, we were able to
test the behavior of our preference model adapted to each of the designers and
the performance of such in the wild. While the model, in general, was less used
than expected, it was indeed able to learn to certain extent characteristics of the
preferred suggestions.

Dataset
The dataset 𝑆 created each discrete step the designer applied a suggestion, had
a set of intrinsic attributes that while positive and interesting to learn from,
they could have been counterproductive and could potentially explain the low
and fluctuating accuracy of the model. Firstly, as mentioned in section Designer
Preference Model, each generated dataset had a maximum number of samples of
𝑀 ×𝑁 × 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, capped to 625 samples in our study, which might not
be enough data to accurately learn or would require more training epochs, which
ultimately would result in overfitting. This aligns with the open problems presented
in [21], where the authors discuss that games will always be constrained by the
amount of data, and even though we can generate many samples with our EA, it
still might not be enough to cope with the amount of data that ML-approaches
require.

Secondly, by taking advantage of the grid visualization of the MAP-Elites, we also
inherited the behavioral relation among the different elites, and consequently, each
independent training session would intrinsically represent such relation. While
our objective was indeed to learn this behavior relationship, which could reveal
interesting relations and perspectives by the model, the differences that each
pair of behavioral dimensions have could potentially disrupt the whole model
between training sessions. For instance, if we train with symmetry and similarity
as dimensions, and subsequently change them to symmetry and leniency, what
before could be 0.8 in preference in the dataset (i.e. a neighbor of the previously
applied suggestion), could now be 0.0 in preference for this dataset, since the pair
of dimensions would sort individuals completely different.

Finally, the fact that we automatically assigned an estimated preference value to all
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individuals based on their grid position, and as pointed out in the previous point,
relations could fluctuate dramatically, which could arise a potential issue with the
dataset. For instance, a challenge with estimating the preference can be observed
in the aesthetic aspects of the rooms, where two rooms can be quite aesthetically
similar (i.e. have a single different tile) and yet, due to the way we assign the
preference values to train, have a very different preference, thus, enabling confusion
in the model. Nevertheless, we did not want the assigned preference value to be
based on the similarity between suggested rooms since what the model would end
up just learning is to classify based on aesthetic similarity. Therefore, there would
not be any need to train any model and through just composing a similarity table
and comparing new rooms to the ones already included we would probably achieve
the same result.

Preference modality
We chose the suggestion grid of the MAP-Elites as an inflection point for the
training of the model since it felt more appropriate and natural to the workflow
of the tool, and more of a pointer to the actual preference of a designer. The
suggestion grid is a reflection of the EA search for quality solutions and having the
designer proactively choosing solutions that were interesting for them seemed like
an indicator of the preference and interest of the designer.

Based on when the designers actually started applying suggestions and their reason
why, indicates that they were not as representative of the preference of the designer
as expected. Instead, suggestions were seen as an in-between step to help shape
the final room, after creating a first draft of the room and before actually reaching
a satisfactory room. This opens up the investigation on what design processes or
combinations of processes could be captured to accurately represent the designers’
preferences with higher fidelity.

Firstly, we need to consider the level of the designer that is using the tool. The
design process, the objectives when designing, the vision on what to do, and the
ideas on what to design and what is expected from an interactive tool as ours, could
vary quite drastically between designer levels, as it is concluded in [9]. Considering
our previous studies with game designers that are more experienced and the one
done for this study, we realize that novice designers come with many different
ideas that they would like to try, as well as experimenting with very different
designs, which in turn means that their preferences and intentions change in very
short periods. Understanding this, and adding it as a constraint on the design of
preference models is vital since we would want to recognize this key changes to
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probably discard the model and start fresh since what the model had learned might
not be useful anymore.

Secondly, choosing what and when to gather information to create the model is a
key aspect. Besides the EA suggestions on the designer’s design, we could use the
designer’s history of changes through their design as well as their current designs.
In our case, constantly analyzing the composition of the dungeon and the rooms
could bring some insight on the stage of the design process of the designer, which
could be used to further understand what to use, if we should keep using the same
model, and how to train.

It might even be relevant to have a set of models per set of rooms that have some
qualitative similarities to avoid confusion in the model, and updating the model that
is relevant to the specific objectives of the designer. In counterpart, this would break
the aspect of generalization (i.e. learning the preference of the designer throughout
their design process) that could enable us to learn more from the designer.

Dynamic-Dynamic System vs. Dynamic-Static System
In our experiments, we designed a system where the model would move through
the solution space (i.e. the preference-space of the designer) as the designer moves
as well, which we call a dynamic-dynamic system. In such a system, the designers
drift in many dimensions as they develop, understand better the tool, get deeper
in the creative process, have different objectives, and such on. Further, designers
might have drifted quite drastically in between training sessions, which ultimately
makes the dynamic model harder to move with the designers, resulting in a deficient
model.

Therefore, we can conclude that to have some stability and be more robust to an
ever-changing designer and creative process, we need some part of the approach
to be static. Yet, the designer will never stop being a dynamic component, thus,
it is the model that needs to be static. An exciting and interesting open area of
research is then in the notion of community models, which would be models fed
with several designers’ designs, clustered together by their qualitative similarities
creating archetypes of designers or archetypes of designs. Such a set of group
models would adapt to the dynamic designer by placing the models in the solution
space, where a designer instead of drifting together with their model, they would
traverse such a space of models as she drifts through the many dimensions of her
creative process.
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Future Work
Taking as a starting point the big amount of data (i.e. handmade rooms) collected
from all the user studies done to date, and as abovementioned, we believe that
a community model formed through clustering is a more realistic model. The
envisioned system would follow exactly the same approach and core concept
presented in this paper, i.e. a model that as it becomes more confident on the
preference of the designer, the more weight it has to evaluate newly generated
individuals by the IC-MAP-Elites, as a complementary evaluation to the objective
function.

Such a system could be created by using the data of each designer (i.e. a list
of created rooms), then those could be arranged in different clusters that would
represent archetypical designers or archetypical designs. From this point, we would
have a foundation from which we would categorize new designers and we could,
on the one hand, create a model from the data in the cluster and start adapting it to
the current designer, avoiding the cold start problem. On the other hand, we could
as well just keep trying to assign the designer, based on her designs, to different
clusters, using each cluster as a model to infer what the “community” of designers
would prefer, and since, the designer is part of that community at the moment,
what she would prefer. Therefore, creating a model that could be more robust for
evaluating designers’ preferences by means of having more or less stable clusters
that designers could navigate as they go deeper into the design process.

Furthermore, we could go a step further and conceptualize a layered model that on
the top layer could represent the community models of the designers, and on the
bottom layer, specific designer’s models. The bottom layer would then be created in
a more classical training session outside our MI-CC tool, with the designer being
queried a set of models and she explicitly labeling what she likes and whatnot. Such
a model could be used to communicate the expected design style and preference
among a group of designers working together or to train new designers based on
senior designers’ preferences, intentions, and style.

We would also like to explore different steps on the tool where we could collect
relevant and crucial data of the designers that could bring us a step closer to a more
accurate model of their preferences. Furthermore, accounting for the designer level
could have a very impactful result on an effective model, and on how we handle
them and their relevance.

Finally, exploring and using different representations of the data, such as images
of the rooms in a Convolutional Neural Network (CNN), or qualitative and more
processed information of the room (e.g. tiles density, sparsity, and amount, room
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complexity, connected rooms information, etc.) is an interesting future line. We
believe that CNNs could perform better but required even larger amounts of data,
and creating 625 images of the suggestion (i.e. our maximum number of data
tuples) and then training the model could be cumbersome and have a significant
impact on the workflow.

Conclusion

In this paper, we have presented the Designer Preference Model, which is a
data-driven system that learns an individual designer’s preference through the
designer’s proactive choosing of generated suggestions without disrupting the
continuous reciprocal workflow in MI-CC. We implemented our approach in the
Evolutionary Dungeon Designer, a Quality-Diversity MI-CC tool, where designers
can create dungeons and rooms while the underlying evolutionary system provides
suggestions adapted to their current design.

We used the model as a complementary evaluation system to the fitness function
of the suggestions in a weighted sum, where the model gained more weight as
it became more confident and performed better. Therefore, we aimed at better
assessing these provided suggestions with the use of the Designer Preference
Model, for them to be interesting and preferable but still usable for designers.

Through our experiments and preliminary studies on using the model to adapt
to different designers, we identified a set of challenges and open areas for active
research that integrates MI-CC with PCG through Machine Learning. Those
challenges relate to the amount of user data needed to accurately learn from the
user’s preferences, what type of data is needed from the process, the cold start
problem, the seldom collection of data to train, the quality of the dataset, and the
designer-model setup. Moreover, we wanted to come closer to machine teaching [32]
approaches where the human provides fewer data points but with higher quality
(i.e. the necessary data to correctly learn) rather than classic approaches to ML
(i.e. offline training with a substantial amount of data). In our approach, while
the designer has the decision on when to train the algorithm and to a certain
extent, with what data to train, we are still missing certain granularity to empower
designers to give the right information to the algorithm.

The combination of MI-CC tools with PCG through Machine Learning is a
promising area of research that has the potential to enhance content creation.
Specifically, designer modeling and our approach to model the designer’s preference
can have a great impact on the creative process of designers by considering their
preferences, intentions, and objectives into the loop, by adapting the workflow to
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their requirements, or by smoothing the communication among various designers.

Finally, by adding the preference model as a complementary evaluation to the
generated suggestions of the evolutionary algorithm, we can give more control,
to a certain extent, to the designers over the evaluation of the individuals. In
consequence, we can generate higher quality suggestions that better fit a specific
designer.
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PAPER V - INTERACTIVE
CONSTRAINED MAP-ELITES:
ANALYSIS AND EVALUATION OF THE
EXPRESSIVENESS OF THE FEATURE
DIMENSIONS
Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius

ABSTRACT

We propose the Interactive Constrained MAP-Elites, a quality-diversity solution
for game content generation, implemented as a new feature of the Evolutionary
Dungeon Designer (EDD): a mixed-initiative co-creativity tool for designing
dungeons. The feature uses the MAP-Elites algorithm, an illumination algorithm
that segregates the population among several cells depending on their scores with
respect to different behavioral dimensions. Users can flexibly and dynamically
alternate between these dimensions anytime, thus guiding the evolutionary process
in an intuitive way, and then incorporate suggestions produced by the algorithm in
their room designs. At the same time, any modifications performed by the human
user will feed back into MAP-Elites, closing a circular workflow of constant mutual
inspiration. This paper presents the algorithm followed by an in-depth evaluation
of the expressive range of all possible dimension combinations in several scenarios,
and discusses their influence in the fitness landscape and in the overall performance
of the procedural content generation in EDD.
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INTERACTIVE CONSTRAINED
MAP-ELITES: ANALYSIS AND EVAL-
UATION OF THE EXPRESSIVENESS
OF THE FEATURE DIMENSIONS

Introduction

Procedural Content Generation (PCG) refers to the generation of game content with
none or limited human input [1], where game content could be anything from rules
and narrative, to levels, items, and music. While PCG has been a factor in game
development since trailblazing games like Rogue [2] and Elite [3], it has only been
a popular academic research topic for little more than a decade. Search-based PCG
designates the use of a global search algorithm, such as an evolutionary algorithm
to search content space [4].

Part of PCG’s appeal is the promise to produce game art and content faster and at a
lower cost, as well as enabling innovative content creation processes such as player-
adaptive games [5–7], data-driven content generation [8, 9], and mixed-initiative
co-creativity [10]. Mixed-initiative co-creativity (MI-CC), a concept introduced
by Yannakakis et al. [11], refers to the approach of using a creation process
through which a computer and a human user provide and inspire each other in the
form of iterative reciprocal stimuli. Examples of MI-CC systems are Pitako [12],
Ropossum [13], Tanagra [14], CICERO [15], and Sentient Sketchbook [16].

MI-CC aligns with the principles of lateral thinking and creative emotive reasoning:
the processes of solving seemingly unsolvable problems or tackling non-trivial
tasks through an indirect, non-linear, creative approach [10]. Additionally, MI-CC
provides insight on the affordances and constraints of the human process for
creating and designing games [1].

A key mechanism in MI-CC approaches is to present suggestions to users, and
these suggestions must be of high quality but also be sufficiently diverse. So-called
quality-diversity algorithms [17] are very well suited for this, as they find solutions
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that have high quality according to some measure but are also diverse according
to other measures [18]. The Multi-dimensional Archive of Phenotypic Elites
(MAP-Elites) [19] is a suitable algorithm for this kind of problem. Khalifa et al. [8]
presented constrained MAP-Elites, a combination MAP-Elites with the feasible-
infeasible concept from the FI2Pop genetic algorithm [20], and applied this to
procedurally generating levels for bullet hell games. Another recent implementation
of MAP-Elites has been used to produce small sections of Super Mario Bros levels
called scenes, addressing specific game mechanics [21].

The Evolutionary Dungeon Designer (EDD) is a MI-CC tool for generating
dungeons for adventure games using a FI2Pop evolutionary approach [22–25]. This
research was presented in [26], introducing Interactive Constrained MAP-Elites (IC
MAP-Elites), a combination of Constrained MAP-Elites with interactive evolution,
in the shape of a continuous evolutionary process that takes advantage of MAP-
Elites’ multidimensional discretization of the search space into cells. In [26], we
analyzed the effects of using quality-diversity in procedurally generating dungeons,
as well as the effects of continuous evolution and dimension customization.

This paper contributes with a thorough evaluation of the expressive range of EDD’s
MAP-Elites through all possible dimension combinations in several scenarios,
as well as by extending the feature dimensions to two new dimensions, Inner
similarity, which adds a similarity measure independent of the aesthetics, and
Leniency, which strives to measure the subjective challenge score of a level.
Following recent research on how to evaluate procedural content generators and, in
particular, quality-diversity approaches [27–29], we present the results from new
experiments with the objective to evaluate the expressive range of all dimensions
in pairs, as well as to analyze how the generated and unique solutions relate to all
the dimensions included in the search space, and assess IC MAP-Elites feasibility
and adaptability to create dungeons and adventure levels.

Previous Work

Map-Elites for illuminating search spaces
Quality-diversity algorithms are algorithms which search a solution space, not
just for the single best solution, but for a set of diverse solutions which are high
performing. MAP-Elites maintains of map of good solutions [19] and is a well-
known quality-diversity algorithm. The map is divided into a number of cells
according to one or more feature dimensions. In each cell, a single solution is
kept. At every update, an offspring is generated based on one or more existing
solutions. That offspring is then assigned to a cell based on its feature dimensions,
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which might or might not be the same as the cell(s) its parent(s) occupy. If the new
offspring has a higher fitness than the existing solution in that cell, it replaces the
previous item in the cell. This process results in a map of solutions where each cell
contains the best found solution for those particular feature dimensions.

Evaluation of Procedural Content Generators
Shaker, et al. [30], argues that ultimately the evaluation of content generators is
to verify that they fulfil their design goals. In order to be able to understand or
modify a generator it is important to visualize its content space. However, it is
seldom enough to look at a single individual piece of content, but rather it is vital
to examine the frequency the different features appear, or the amount of variety
the features demonstrate. Previous attempts of doing this are termed expressivity
measures [31, 32] and have, for instance, explored difficulty measures [33]. Other
approaches incorporate tool assisted parameter exploration due to its effect on the
content space [27, 34].

Evolving Dungeons as a Whole, Room by Room
EDD is a MI-CC tool that allows a human designer to create a 2D dungeon and the
rooms it is composed of. The designer is able to manually edit both the dungeon by
placing and removing rooms, and the individual rooms by editing the tiles that each
room consists of. EDD’s underlying evolutionary algorithm provides procedurally
generated suggestions, and is driven through the use of game design micro- and
meso- patterns. A detailed description of all EDD’s features, including the use of
game design patterns, can be found in [22–25], where [22, 24] analyze and discuss
the mixed-initiative system in EDD and [23,25] focus on the procedural content
generator.

In this section we present the latest version of EDD1, which includes significant
improvements based on the outcomes from the qualitative analysis discussed in [22].
The dungeon is now represented as a graph of interconnected rooms of any given
size between 3 × 3 and 20 × 20 tiles. The smallest allowed dungeon is composed
by two rooms with one connection to each other. Rooms and connections can now
be added and removed at any time. Connections are marked with door tiles.

The designer marks one room as the initial room for feasibility calculation: a
dungeon is feasible when there is at least one path between the initial room and
any other passable tile in the dungeon. Rooms and doors that are unreachable from
the initial room are highlighted in red, so that they can be easily identified by the

1Available for download at https://github.com/mau-games/eddy
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Figure 1: The room editor screen in EDD. The left pane contains all the options for manually
editing the room displayed at the center-left of the screen. The right section displays the procedurally
generated suggestions.

designer.

The starting screen in EDD is the dungeon editor screen. Every new room is empty
(composed solely of floor tiles) when created and is placed detached from the
dungeon graph. After manually connecting the room to the dungeon with at least
one connection, the designer has the option to populate the room using the room
editor screen (Figure 1). This screen can be reached by either double-clicking on
the room or by clicking on the "Start with our suggestions" button, which will
present six procedurally generated suggestions to the designer to start editing from.

Figure 1 shows the room editor screen displaying a sample room with the dimensions
7 × 13 tiles. The left pane lists all the available options for manually editing the
room by brush painting with one of the available tile types (floor, wall, treasure,
or enemy) and one of the two brush sizes (single tile and five-tile cross shape).
Control-clicking allows the designer to bucket paint all adjacent tiles of the same
type. Brush painting with the lock button on preserves selected tiles in all the
procedurally generated suggestions. A detailed description of all the options in this
pane is included in [22, 23].

The right side of the screen displays the procedurally generated suggestions,
by means of the Interactive Constrained MAP-Elites (IC MAP-Elites) genetic
algorithm (see Part II). When the designer accesses the room editor screen, IC
MAP-Elites starts and continuously populates the suggestions pane with elites. The
evolutionary process is fed with the manually edited room (i.e. target room), so that
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every change in the room affects the generated suggestions. By clicking on "Apply
Suggestion", the manually edited room is replaced by the selected suggestion, thus
affecting the upcoming procedural suggestions. "Restart" restarts evolution, and
"Go To World Grid" takes the user back to the dungeon editor screen.

Interactive Constrained MAP-Elites

The overarching goal of MI-CC is to collaborate with the user to produce content,
either to optimize (i.e., exploit) their current design towards some goal or to
foster (i.e., explore) their creativity by surprising them with diverse proposals. By
implementing MAP-Elites [19] and continuous evolution into EDD, our algorithm
can (1) account for the multiple dimensions that a user can be interested in, (2)
explore multiple areas of the search space and produce a diverse amount of high-
quality suggestions to the user, and (3) still evaluate how interesting and useful
the tile distribution is within a specific room. Henceforth, we name the presented
approach Interactive Constrained MAP-Elites (IC MAP-Elites).

EDD uses a single-objective fitness function (shown in Equation (1)) with a
FI2Pop genetic algorithm, where fitness is a weighted sum divided equally between
(1) the inventorial aspect of the rooms and (2) the spatial distribution of the
design. 𝑓𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑎𝑙 is the evaluation of the aggregated and normalized quality of
treasures, enemies, and doors (inventorial patterns). 𝑓𝑠𝑝𝑎𝑡𝑖𝑎𝑙 refers to the quality and
distribution of chambers, i.e. open areas in the room and corridors (both categorized
as spatial patterns), and the meso-patterns that are created within chambers and
their quality. Quality refers to the positioning, safety, composition, and relation
between patterns. The fitness adapts to the user’s current design, automatically
informing target ratios and distributions to be used as targets. In-depth evaluation
of EDD’s fitness function, as well as discussion and explanation of the quality of
each inventorial, spatial, and meso pattern, can be found in [23–25].

𝑓 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑟) =
1
2
𝑓𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑎𝑙 (𝑟) +

1
2
𝑓𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (𝑟) (1)

Furthermore, IC MAP-Elites adds interactive and continuous evolution to the
Constrained MAP-Elites presented by Khalifa et al. [8]. This is done through an
adaptive fitness function (based on the designer’s design) that adapts the content
generation, and by enabling the designer to flexibly change the feature dimensions
and the granularity of the cells. It also adapts the usability of MAP-Elites to
generate dungeon and adventure levels in an MI-CC system, which gives more
control to the designers over non-intuitive parameters and aspects of MAP-Elites,
while providing a richer set of high-performing and diverse suggestions.
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Illuminating Dungeon Populations with MAP-Elites
MAP-Elites explores the search space more vastly by separating interesting feature
dimensions, that affect different aspects of the room, such as playability or visual
aesthetics, from the fitness function, to categorize rooms into cells.

In this subsection, we firstly present all the current feature dimensions identified
and implemented in EDD, secondly, we explain the transition from fixed evolution
to continuous evolution, and lastly, we introduce and outline the IC MAP-Elites
algorithm.

Dimensions

Dimensions in MAP-Elites are identified as those aspects of the individuals that
can be calculated in the behavioral space, and that are independent of the fitness
calculation. These are crucial in MAP-Elites, as they represent the discretized
dimensions where individuals will be retained as the space is explored. EDD offers
the designer the possibility to choose among the following dimensions, two at a
time (examples of rooms generated using the dimensions are shown in Figure 2c):

Symmetry (Sym) and Similarity (Sim). We choose Symmetry as a consideration
of the aesthetic aspects of the edited room since symmetric structures tend to
be more visually pleasing for the user and relate to fairness distribution and
human-made structures [23,35,36]. Similarity is used to present the user variations
of their design but still preserving their aesthetical edits. Symmetry is assessed
using only impassable tiles (i.e., walls) and evaluated along the X and Y axes and
diagonals. The highest value is normalized by the total amount of walls and used
as the symmetry score (Equation (2)). Similarity is calculated by comparing tile by
tile with the target room (Equation (3)). In-depth descriptions and evaluations can
be found in [23], where both dimensions were used as aesthetic fitness evaluations.

𝐷𝑠𝑦𝑚 =
ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙𝑢𝑒

𝑡𝑜𝑡𝑎𝑙𝑊𝑎𝑙𝑙𝑠
(2)

𝐷𝑠𝑖𝑚 =
𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑙𝑒𝑠 − 𝑛𝑜𝑡𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑇𝑖𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑙𝑒𝑠
(3)

Number of Meso-patterns (NMP). The number of meso-patterns correlates to
the type and amount of encounters the designer wants the user to have in the
room in a more structured manner. The considered patterns are the treasure room
(tr), guard rooms (gr), and ambushes (amb). Meso-patterns associate utility to
a set of tiles in the room, for instance, a long chamber filled with enemies and
treasures could be divided into 2 chambers, the first one with enemies and the
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second one with treasures so the risk-reward encounter is more understandable for
the player. Since we already analyze the rooms for all possible patterns, the number
of meso-patterns is simply #𝑀𝑒𝑠𝑜𝑃𝑎𝑡 = 𝑡𝑟, 𝑔𝑟, 𝑎𝑚𝑏 ∈ 𝐴𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠. Equation (4)
presents the dimensional value, and since the used meso-patterns can only exist in a
chamber, we normalize by the maximum amount of chambers in a room, which are
of a minimum size of 3 × 3, and results in 𝑀𝑎𝑥𝑐ℎ𝑎𝑚𝑏𝑒𝑟𝑠 = ⌊𝐶𝑜𝑙𝑠/3⌋ · ⌊𝑅𝑜𝑤𝑠/3⌋.

𝐷𝑁𝑀𝑃 = min
{

#𝑀𝑒𝑠𝑜𝑃𝑎𝑡
𝑀𝑎𝑥𝑐ℎ𝑎𝑚𝑏𝑒𝑟𝑠

, 1.0
}

(4)

Number of Spatial-patterns (NSP). By spatial-patterns we mean chambers (c),
corridors (cor), connectors (con), and nothing (n). We identify the number of
spatial-pattern relates to how individual tiles group (or not) together to form
spatial structures in the room. The higher the amount of spatial-patterns the lesser
tiles will be group together in favor of more individualism. For instance, a room
with one spatial-pattern can be one with no walls and just an open chamber,
while a room with a higher number of spatial-patterns would subdivide the space
with walls, using tiles for more specific patterns. Equation (5) presents how we
calculate the value for such a dimension. The number of spatial patterns is simply
#𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃𝑎𝑡 = 𝑐, 𝑛, 𝑐𝑜𝑟, 𝑐𝑜𝑛 ∈ 𝐴𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠, we then normalize it by the largest
side of the room and multiply it by a constant value, determined as 𝐾 = 4.0 through
a process of experimentation.

𝐷𝑁𝑆𝑃 = min
{

#𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑃𝑎𝑡
max {𝐶𝑜𝑙𝑠, 𝑅𝑜𝑤𝑠} · K , 1.0

}
(5)

Linearity (Lin). Linearity represents the number of paths that exist between the
doors in the room. This relates to the type of gameplay the designer would like the
room to have by the distributions of walls among the room. Having high linearity
in a room does not need to only be by having a narrow corridor between doors
but could also be generated by having all doors in the same open space (i.e. the
user would not need to traverse other areas) or by simply disconnecting all paths
between doors. Equation (6) shows the linearity calculation. Due to the use of
patterns, we calculate the paths between doors as the number of paths that exist
from a spatial-pattern containing a door to another. Finally, this is normalized by
the number of spatial patterns in combination with the number of doors and their
possible neighbors.

𝐷𝑙𝑖𝑛 = 1–
𝐴𝑙𝑙𝑃𝑎𝑡ℎ𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐷𝑜𝑜𝑟𝑠

#𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑃𝑎𝑡 + #𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑃𝑒𝑟𝐷𝑜𝑜𝑟
(6)
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Inner Similarity (IS). Inner similarity compares the target room to one generated,
considering only the distribution and ratios of micro-patterns in both rooms rather
than any aesthetic criteria. Specifically, we look into the density (𝑑𝑒𝑛) and sparsity
(𝑠𝑝𝑎) of enemies (𝑒𝑛), treasures (𝑡𝑟𝑒), and walls (𝑤𝑎𝑙) in the target room (𝑅𝑡𝑔) in
comparison with the generated rooms (𝑅𝑔𝑒𝑛). To calculate the density and sparsity
of each micro-pattern, we first clustered all micro-patterns of the same kind based
on the distance within the room (i.e. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1). We then use these clusters to
calculate the density (Equation (7)) using as density threshold 𝜃 = 4 for treasures
and enemies, and 𝜃 = 6 for walls, and calculate the sparsity (Equation (8)). Finally,
we calculate the difference between each distribution in 𝑅𝑡𝑔 and 𝑅𝑔𝑒𝑛, linearly
combining all the values into the IS measure as in Equation (9).

𝑑𝑒𝑛(𝑥) =

∑ |𝑐𝑙𝑢𝑠𝑡𝑠 |
𝑖=1 min

{
1.0,
|𝑐𝑙𝑢𝑠𝑡𝑖 |
𝜃𝑥

}
|𝑐𝑙𝑢𝑠𝑡𝑠 | (7)

𝑠𝑝𝑎(𝑥) =

∑ |𝑐𝑙𝑢𝑠𝑡𝑠 |
𝑖=1

∑ |𝑐𝑙𝑢𝑠𝑡𝑠 |
𝑗=1, 𝑗≠𝑖

𝐷𝑖𝑠𝑡 (𝑐𝑙𝑢𝑠𝑡𝑖 , 𝑐𝑙𝑢𝑠𝑡 𝑗 )
|𝑟𝑜𝑜𝑚 |

|𝑐𝑙𝑢𝑠𝑡𝑠 | · ( |𝑐𝑙𝑢𝑠𝑡𝑠 | − 1) (8)

𝐷 𝐼𝑆 =

𝑚𝑖𝑐𝑟𝑜𝑝𝑎𝑡𝑠∑︁
𝑖=1

��𝑑𝑒𝑛(𝑅𝑔𝑒𝑛) − 𝑑𝑒𝑛(𝑅𝑡𝑔)
��+��𝑠𝑝𝑎(𝑅𝑔𝑒𝑛) − 𝑠𝑝𝑎(𝑅𝑡𝑔)
�� (9)

Leniency (Len). Leniency calculates how challenging a room is at any given point.
It is based on the amount of enemies and treasures that are in a room, their density
and sparsity calculated as in eq. (7) and (8), respectively, and how safe the doors
are (i.e. entry/exit points) calculated as in [24]. We base our calculation in the idea
that rooms are less lenient the more enemies they contain as well as how they are
distributed, counterbalanced by the number of treasures as they reward players.
We calculate the dimension value for each room as shown in (Equation (12)),
which uses a combination of precomputed non lenient (Equation (10)) and lenient
(Equation (11)) values.

𝑛𝑜𝑛𝐿𝑒𝑛𝑖𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠 = 𝑤0 · log10 ( |𝑒𝑛| · 𝑠𝑝𝑎(𝑒𝑛))+

𝑤1 · log10 ( |𝑒𝑛| · 𝑑𝑒𝑛(𝑒𝑛)) + 𝑤2 · (1.0 − 𝑑𝑜𝑜𝑟𝑠𝑎 𝑓 𝑒𝑡 𝑦)
(10)
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𝐿𝑒𝑛𝑖𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠 = 1/2 log10 ( |𝑡𝑟𝑒 | · 𝑠𝑝𝑎(𝑡𝑟𝑒))+
1/2 log10 ( |𝑡𝑟𝑒 | · 𝑑𝑒𝑛(𝑡𝑟𝑒))

(11)

𝐷𝑙𝑒𝑛 = 1.0 − (𝑛𝑜𝑛𝐿𝑒𝑛𝑖𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠 − (1/2 · 𝐿𝑒𝑛𝑖𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒𝑠)) (12)

(a) Basic room (b) Complex room (c) Example Elites generated using IC MAP-Elites
with (b) as target.

Figure 2: (a) and (b) represent target rooms used in the experiments. Each row in (c) represents an
independent run of the algorithm using the dimension specified to the left. Each column splits
the dimension score into three intervals. Each cell displays (top-right) the fitness of the optimal
individual in its related interval.

Continuous and Interactive Evolution

Since EDD already uses a FI2Pop, we took the Constrained MAP-Elites, presented
by Khalifa et al. [8], as a starting point. The illuminating capabilities of MAP-Elites
explore the search space with the constraints aspects of FI2Pop. This approach
manages two different populations, a feasible and an infeasible one, within each
cell. Individuals move across cells when their dimension values change, or between
the feasible and infeasible population according to their fulfillment of the feasibility
constraint.

As discussed by Takagi, interactive evolution is a way to improve the capabilities
of Evolutionary Algorithms (EA) by having humans in-the-loop to subjectively
evaluate individuals. This hybrid approach has proven to reach better and more
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adaptive results but at the expenses of user’s fatigue and user’s understanding of the
EA and the given problem [37]. However, in EDD and the IC MAP-Elites, the user
does not directly evaluate individuals; instead, IC MAP-Elites adapts the fitness
and search based on different interactions the designer has with the algorithm.

The designer can interact with the crossover step by locking tiles [23], and with the
dimensions and cells by changing the dimensions and granularity for the MAP-
Elites, enabling IC MAP-Elites to focus on different regions of the generative space.
Furthermore, IC MAP-Elites constantly updates the target room and configuration
with the most recent version of the designer’s design. Once the suggestions are
broadcasted, that room is incorporated without changes to the population of
individuals in the corresponding cell.

This adaptability feature and different designer’s indirect interactions with IC
MAP-Elites, enables the implementation of continuous and interactive evolution,
as well as allowing the designer to focus solely in the design of the room, while IC
MAP-Elites adapts to the new designs.

Algorithm

IC-MAP-Elites is depicted in Algorithm 3. Cells are first created based on the
dimensions selected by the user and proceed to initialize the population based on
the user’s design, evaluate it and assign each individual to the corresponding cell.
Before starting each generation, we check if the dimensions have changed, and if
so, recreate the cells and populate them with the previous individuals, and proceed
through the evolutionary strategies. We first select uniformly random which cell to
choose parents from, and then we select 5 parents through tournament-selection.
Offspring are produced through a two-point uniform crossover operation with a
30% chance of mutation. Offspring are placed in the correct cell and population
after calculating their fitness and dimension’s information. Finally, cells eliminate
the low-performing individuals that over-cap their maximum capacity. Since
interbreeding is not allowed, and can only happen indirectly (i.e. the offspring
changing population and then used for breeding in consequent generations), the
strategies are repeated for each of the populations.

IC MAP-Elites runs for 𝑛 generations, and once it reaches the specified limit, it
broadcasts the found elites. In order to foster the exploration, we first mutate all
the individuals from all the populations and cells (while retaining the previous
population), and add them into the same pool together with the current edited
room without changes. Finally, we evaluate and assign all the individuals to the
correct cells, and cells that are over maximum capacity eliminates low-performing
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Algorithm 3 Interactive Constrained MAP-Elites
1: procedure IC MAP-Elites([ {𝑑1, 𝑣1 }, ..., {𝑑𝑛 , 𝑣𝑛 }])
2: 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑐𝑢𝑟𝐸𝑑𝑖𝑡𝑅𝑜𝑜𝑚 ⊲ Always in background
3: createCells( [ {𝑑1, 𝑣1 }, ..., {𝑑𝑛 , 𝑣𝑛 }])
4: for 𝑖 ← 1 to 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 do
5: add mutate(𝑡𝑎𝑟𝑔𝑒𝑡) to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

6: CheckAndAssignToCell(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
7: while true do ⊲ start continouous evo
8: for 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 1 to 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝐺𝑒𝑛 do
9: if dimensionsChanged then

10: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑃𝑜𝑝 ← 𝑐𝑒𝑙𝑙𝑠𝑝𝑜𝑝

11: createCells(𝑛𝑒𝑤𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠)
12: checkAndAssignToCell(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑃𝑜𝑝)
13: repeat [for feasible & infeasible pop.]
14: for 𝑖 ← 1 to 𝑃𝑎𝑟𝑒𝑛𝑡 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
15: 𝑐𝑢𝑟𝐶𝑒𝑙𝑙 ← rndCell(𝑐𝑒𝑙𝑙𝑠)
16: add tournament(𝑐𝑢𝑟𝐶𝑒𝑙𝑙) to 𝑝𝑎𝑟𝑒𝑛𝑡

17: 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔← crossover(𝑃𝑎𝑟𝑒𝑛𝑡)
18: checkAndAssignToCell(𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔)
19: sortAndTrim(𝑐𝑒𝑙𝑙𝑠)
20: broadcastElites() ⊲ render elites
21: 𝑝𝑜𝑝′ ← 𝑐𝑒𝑙𝑙𝑠𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

22: add mutate(𝑐𝑒𝑙𝑙𝑠𝑝𝑜𝑝) to 𝑝𝑜𝑝′

23: add 𝑡𝑎𝑟𝑔𝑒𝑡 to 𝑝𝑜𝑝′

24: checkAndAssignToCell (𝑝𝑜𝑝′)
25: sortAndTrim(𝑐𝑒𝑙𝑙𝑠)
26: procedure createCells(dimensions)
27: for each 𝑑𝑖𝑚 ∈ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 do
28: add newCell(𝑑𝑖𝑚𝑑 , 𝑑𝑖𝑚𝑣) to 𝑐𝑒𝑙𝑙𝑠

29: procedure check&AssignToCell(𝑐𝑢𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
30: for each 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∈ 𝑐𝑢𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do
31: 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑓 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)
32: 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑑 ← 𝑑𝑖𝑚(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)
33: add 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 to 𝑐𝑒𝑙𝑙𝑝𝑜𝑝 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑑)
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individuals. This procedure is repeated until the user decides to stop the algorithm.

Performance Evaluation across Dimensions

Figure 3: Rooms at generation 2090 targeting Number of spatial-patterns (X) and Symmetry (Y).
Each cell displays (top-right) the fitness of the optimal individual in its related feasible population.

First, we ran a set of experiments to test the results from the IC MAP-Elites using
all possible combinations of the available dimensions using two dimensions at a
time. All experiments were run using 13 × 7 rooms, the same room size as in The
Binding of Isaac [38], a representative example of a dungeon-based adventure game.
In each experiment, the initial population was set to 1000 mutated individuals
distributed in feasible and infeasible populations in all cells which were set to
a maximum capacity of 25 individuals each. IC MAP-Elites ran continuously,
and every 100 generations rendered the elites of each cell. At each generation, it
selected 5 parents per population among uniformly random chosen cells. Offspring
were always produced through a two-point crossover and had a 30% chance of
being mutated, which would randomly alter one tile in the level.

Figure 3 shows a grid containing the best found suggestions at generation 2090,
while aiming for number of spatial-patterns at the X-axis and symmetry at the
Y-axis with a granularity of 5. Each cell displays the optimal individual of the
feasible population under a given pair of dimension values. The fitness score is
displayed on the cells’ top-right corner.

The fitness evaluation in IC MAP-Elites is quite lightweight in terms of computa-
tional cost, which enables the grid of suggestions to be completed in a matter of
seconds. This is of principal importance for successfully implementing continuous
evolution, so that the influence of each manual change in the edited rooms is
reflected in the suggestions almost instantly.
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Table 1: Comparison of the avg. explored space and avg. fitness of the generated individuals in
different evaluations.

Evaluation ♢ △ ⃝
IC MAP-Elites: Avg. dimensions in pairs 0.89 36.46% 52.4%
IC MAP-Elites: All Dimensions 0.78 51.7% N/A
Objective-based EA 0.92 22.48% N/A
♢ Avg. Fitness △ Avg. coverage across all dimensions
⃝ Avg. coverage in respective dimension pair

Results in Figure 3 are representative of the good quality diversity solutions
produced by EDD. The average fitness across elites is 0.872, and the highest fitness
is 0.956 (cell [0.4, 0.8]). No two rooms are the same. As intended, high levels
of symmetry are displayed in the upper rows, gradually decreasing towards the
bottom row. Similarly, rooms in the leftmost column contain lower amounts of
spatial patterns, increasing towards the rightmost column. Lower amounts of spatial
patterns translate into more open rooms with almost no corridors and one or two
large adjacent chambers (as in cell [0.2, 0.2]), as opposed to highly pattern filled
rooms that comprise intricate pathways converging at one or two small chambers
(cell [1, 0.2]).

Fitness values show that some dimension combinations are harder to optimize than
others, so that the whole grid depicts a gradient landscape of the compatibility
between each pair of dimensions. The bottom-left corner shows difficulties produc-
ing symmetric rooms with low amounts of spatial patterns, as opposed to rooms
with many corridors (upper-right corner), which seem to favor the generation of
symmetrical structures.

Additional similar experiments can be found in [26], where we combined other
pairs of dimensions and analyzed and discussed the correlation and limitations
found in them. However, in the following section, we present an extension of those
evaluations through a more exhaustive and in-depth assessment of IC MAP-Elites.

Expressive Range Analysis

We ran a second set of experiments analyzing the expressive range [31] of the IC
MAP-Elites using the 21 possible combinations of dimension pairs. We followed
the same setup as presented in the previous section, and every 100 generations,
we collected the unique generated individuals’ data, which was aggregated in all
the expressive ranges and individually plotted in Figure 7. Through this, between
150 to 2001 individuals were produced every 100 generations. By exploring
the expressive range and conducting a comparative analysis among the various
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Figure 4: Expressive range of the 21 possible combinations (from a to u) of dimensions picked
in pairs. Each subfigure is composed of two plots: (left) an evaluation based on a given pair of
dimensions; (right) the same pair of dimensions but evaluated in terms of Linearity and Leniency
scores. Each hexagon relates to a dimensional score, whereas a lighter hue indicates a higher
number of unique individuals generated under that particular score. All runs used Figure 2a as the
target room, and its dimensional score is highlighted with an orange mark. Under each subfigure,
we present data particular to the specific tested pair of dimensions. ⃝, †, and ⊙ represent the
coverage percentage in the respective pair of dimensions when running IC MAP-Elites with the
subfigure’s pair of dimensions (⃝), IC MAP-Elites with all dimensions in the search (†), and when
using objective-based EA (⊙). △ represents the avg. coverage percentage across all dimensions
when running IC MAP-Elites with the subfigure’s pair of dimensions.

dimension combinations, we intend (1) to assess IC MAP-Elites, its exploration and
exploitation capabilities, and the feature dimensions, (2) to analyze how different
dimension combinations affect the search for QD content, and (3) to identify bias
in the search space.
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Figure 5: In-detail run showing how all dimensions relate to each other in alternative scenarios. In
(a) IC MAP-Elites ran for 2000 generations using the same target room as in Figure 4 (Figure 2a),
but using all the dimensions in the search, which results in 78125 cells. (b) Shows how all
dimensions were explored when using Figure 4f (NMP-NSP) as pair of dimension. In (c) we used
the same dimensions as in (b) but we changed the target room to Figure 2b. The dimensional
score of the respective target room in each subfigure (Figure 2a for a and b, and Figure 2b for
c) is highlighted with an orange mark. In b and c, the dimensions used for the experiment are
highlighted with a red border.

Moreover, in Table 1 we present a comparison of the avg. diversity and avg. quality
of the generated individuals between different approaches to support our evaluation.
The approaches consist of IC MAP-Elites picking dimensions in pairs (avg. of
the aggregated results), IC MAP-Elites using all dimensions at the same time
in the search, and the objective-based EA that was used in EDD previous to
IC MAP-Elites. When using a pair of dimensions in IC MAP-Elites, the search
explores in avg. 52.4% in the respective pair of dimensions (individual results are
presented in Figure 4) and the individuals generated have an avg. fitness of 0.89. In
comparison, when using all dimensions rather than only pairs, the search explores
51.7% across all dimensions, 15% more than when using pairs, but with a drop in
the avg. fitness of the population (0.78), which is discussed further in Part II and
shown in Figure 6. As expected and concluded before by Mouret and Clune [19],
objective-based EA generated individuals with an avg. high fitness (0.92), but
with low diversity (22.48%). This means that the search had a narrower focus, and
the generated levels did not differ much from each other. Objective-based ran for
5000 generations, but it stagnated and stopped generating novel levels after 13
generations i.e., stopped exploring, generating a total of 1669 levels. Conversely,
IC MAP-Elites kept generating novel levels until stopped, but considerably less
after 1000 generations.

Figure 4 shows the expressive range of the IC MAP-Elites with each letter referring
to a unique pair of dimensions tested, and the subfigure divided into two different
plots. In the left plot, we evaluate the setup based on the used pair of dimensions
with each hexagon placed in relation to their dimensions’ score. The hue of each
of them is connected to the number of unique suggestions generated. Likewise,
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Figure 6: Relation between dimension score and fitness score. (a), (b), and (c) show results using,
respectively, Similarity and Symmetry, NMP and NSP, and NMP and Linearity. (d) was run using
all the 7 dimensions. All runs used Figure 2a as target room, and it’s dimensions score are denoted
with an orange line across the different plots.

in the right plot, we evaluated the setup based on its linearity and leniency score,
which is used to compare the setups’ expressiveness. All the setups were run for
5000 generations, using the same target room, which is shown as an orange marker
(Figure 2a).

In Figure 4, it is shown that with IC MAP-Elites, it is explored a substantial
area of the generative space (denoted in the figure with ⃝ under each subfigure)
rather than just exploiting the area around the target room, depicted as an orange
marker. On average, in all the independent runs in their respective dimensions,
the search explores around 52% of the space, filling at least half of the map with
high-performing elites averaging 0.89 (as shown in Table 1). It can also be observed
that the dense areas of the search space (i.e., where the algorithm exploited the most)
are distant from the target room’s scores, and most of them are sparse throughout
the search. This indicates that using IC MAP-Elites and a pair of dimensions at a
time helps the distribution of the search while exploiting promising areas, and the
search is less likely to be biased towards creating levels similar to the target.

Nevertheless, when using both leniency and linearity to compare the performance
of the dimensions’ pairs, it is shown that they are underexplored and within the
same range (0.4-1.0) when not using them as dimensions. This points towards the
search having difficulties getting out of other dimensions’ local optima, especially
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since the densest search area is within the target room (this is denoted with △ under
each subfigure).

Alternative Scenarios
In Figure 5, we examine how the algorithm would vary its dimensions’ exploration
and exploitation in two different scenarios. (a) Using the same target room as in all
the cases in Figure 4 but using all the possible dimensions in the search space (i.e.
7), and (c) using NMP and NSP (see Section II) as dimensions in the search but
changing the target room to Figure 2b. To draw a better comparison, we added (b),
which shows how all dimensions were explored when using Figure 4f (NMP-NSP)
as pair of dimension.

When using all the dimensions (a), IC MAP-Elites can explore a substantial area
of the search space in each of the dimensions (51.7%), which in total is 15% more
searched space than when using only a pair of dimensions on average. This is
expected since all the dimensions are now acting as archives. However, as it is
noted in Figure 4 under each subfigure, the actual explored space in the respective
pairs (⃝) is most of the time greater than what using all dimensions explore in the
respective pair (†).

It can also be observed that when using NMP and NSP as dimensions Figure 5b
and c, regardless of the target room, IC MAP-Elites manages to still search a good
amount of space (in avg. 38.7% and 43% among all dimensions, respectively). We
suspect that this is because the range between low and high scores in the NMP or
NSP dimensions produces very different rooms, as it can be seen in Figure 2c in
their respective rows.

Moreover, when comparing (a) and (b), it is noticeable that while (a) explores
a greater area than (b) (in general, 15.24% more), it seems to be recurrently
generating the same type of individuals (i.e. depicted with the hue of the hexagon)
while in (b), the dense areas for most of the dimensions are sparser, especially
when matching the pair of dimensions used for evaluation. Finally, it should be
noted that while these three plots are comparable in their diversity search, they
differ in the number of elites they store during the search, with an archive of 78125
cells for (a), and 25 cells for (b) and (c).

Fitness Evaluation
Figure 6 shows the relation of the fitness with the explored individuals in each
dimension in 4 independent runs. (a, b, c) Were runs using dimensions in pairs
with the same data and dimensions as in Figure 4 (u), (f), and (h), respectively.
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(d) Was run using all the dimensions in the search space with the same data as
in Figure 5 (a). There is an evident high correlation between Similarity scores
and fitness across all the subfigures, which is expected since our fitness value is
highly dependant on the target’s ratios. In contrast, IS is not even close to match the
fitness curve of Similarity rather there are high-performing individuals along the
dimension, even when IS calculates similarity using ratios, densities, and sparsities
of the target’s micropatterns to calculate the score of individuals.

Moreover, our experiment shows that when using specific dimensions (Figure 6a-
c), we achieve a relatively better search (i.e. find more diverse and high-quality
individuals) in those dimensions, while still being able to explore the rest of
dimensions. For instance, when not using NSP as a feature dimension such as
in (a) or (c), the NSP dimension is fully explored but generating no high-quality
individuals, meanwhile, when using NSP as a feature dimension as in (b), the
search can find individuals in the same range as in (a) or (c) but with a higher
fitness. Similar results can be seen in the rest of the dimensions where the search
uses specific dimensions, for instance, in (a) exploring diverse and higher quality
individuals in Similarity, or in (c) in Linearity.

The most interesting result can be seen in (d), where we used all dimensions in the
search. This allows for a vast search of diverse individuals in all dimensions, but
at the same time it seems to exploit sub-optimal areas. On the other hand, when
using only a pair of dimensions as in (a), (b) and (c), the search remained dense in
high-quality individuals in all dimensions.

Figure 7: Fitness evolution per 100 generations throughout all the runs. Blue represents the fitness
of the basic room (Figure 2a), and Red represents the fitness of the complex room (Figure 2b).

Furthermore, figure 7 shows the aggregated fitness over time of all dimension pairs
(21). The avg. max fitness and the avg. total fitness are depicted as a dashed line
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and a continuous line, respectively. Both are surrounded by a low opacity thicker
line representing the confidence interval. The graph shows that across all pairs of
dimensions, the avg. fitness of novel generated levels is very high regardless of the
target room and the generation, with a minor fluctuation between 0.92 and 0.94. In
addition, the graph furthers supports what is presented in Figure 6 a, b, and c, with
most of the individuals generated in high score regions of the space in relation to
fitness, but also showing that this is stable throughout the generations. The stable
fitness

This stationary overall high fitness is expected from MAP-Elites as it aims at
constantly generating high-performing diverse individuals. This diversity goal,
combined with an adaptive fitness dependant on the target room, makes it harder
to generate levels with maximum fitness. Figure 7 clearly shows this; depending
on the fitness, there are scores in dimensions or pairs of dimensions that are
less compatible with the fitness evaluation. Yet, what has been shown thus far in
the multiple expressive range analysis and especially in Figure 6a-c, is that IC
MAP-Elites is able to generate high-performing and diverse levels.

Conclusions and Future Work

In this paper, we have done an in-depth evaluation of IC MAP-Elites by analyzing
the expressive range of all the possible pairs of dimensions, their relation to
other dimensions and the fitness. Our results indicate specific dimensions in
level generation, such as when using NMP, NSP, leniency, or Symmetry, that
foster greater exploration. The exploration is not only fostered in their respective
dimensions (in avg. 54%, 61%, 57%, 57%, respectively, when used) but also in all
the others due to the diverse individuals generated within the respective dimensions
as shown in Figure 2c. As observed on Figure 6, aesthetic feature dimensions
such as Similarity and Symmetry have an impact when used or not in the search.
When not using Symmetry, the search does not explore high levels of symmetry,
disregarding to some extent that aesthetic feature in favor of exploring the other
feature dimensions. Moreover, Similarity has a high correlation with fitness as
observed in Figure 6 and depending on the designer’s objective, this might affect
positively or negatively since there will be a strong bias towards highly similar
individuals. In contrast, is seems to be more robust in the fitness landscape and
the exploration of other dimensions because it captures the properties of the target
room rather than its aesthetics.

Regarding the bias in the exploration when using IC MAP-Elites together with
continuous and adaptive evolution, our results show that the generated content is
highly diverse with dense areas along most of the searched space, which is shown
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as well in Table 1. This means that due to the diversity pressure imposed by IC
MAP-Elites, the search is unlikely to be biased towards creating content that is
similar in the feature dimensions’ scores of the target room. Yet IC MAP-Elites
adapts to the target room and generates high-performing individuals along the
rest of the space in the other dimensions, especially in those explicitly used in the
search.

To further assess the algorithm, we ran an experiment using all possible dimensions
(Figure 5a) rather than specific pairs to observe the exploration and exploitation
of the algorithm when not using specific pair of dimensions. As expected, it
explores a substantial area of the search space in all dimensions (in avg. 51.7%)
but surprisingly, the search results in the exploitation of sub-optimal individuals
in all dimensions with an avg. fitness of 0.78 as shown in Figure 6d. While using
pair of dimensions results on 15.24% reduced exploration, the exploitation seems
to be fairly spread among the explored space, visible in Figure 5b and c, and the
density related to fitness is focused on high-performing individuals Figure 6a-c.
This points towards that there are difficulties in (1) fully exploring the space when
using a pair of dimensions even when the exploitation is distributed and focused
on high-performing individuals, and in (2) exploiting the promising areas of the
search when using a higher range of dimensions even when the space is vastly
explored.

In addition, based on our experiments, such difficulties are exacerbated since the
exploration stagnates and keeps exploiting the same areas after ˜1000 generations,
yet finding novel individuals. This happens regardless of the number of dimensions,
which dimensions, or the target room. Our findings point to challenges in the
selection step of IC MAP-Elites, which selects cells uniformly random. Exploring
different methods for the selection of cells and individuals is a promising future
step. For instance, Gravina et al. [29] explored how four divergent search algorithms
guide cells’ selection. benefit MAP-Elites standard selection method.

Furthermore, preliminary experiments seem to indicate that some dimensions,
which are more explorative (e.g., NMP, NSP, Leniency, Symmetry), are more
robust to changes in the target room, exploring similar areas of the search space
regardless of the target, which can be observed in Figure 5 (b) and (c). This
points towards dimensions that would make the algorithm more robust to changes,
reinforcing its adaptability feature. Further experiments are needed to analyze how
different dimensions are better at adapting to continuous changes in the target
room, which would also indicate better stability in the search. Along these lines,
further evaluation is needed with human designers to assess and explore whether
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IC MAP-Elites is beneficial for the MI-CC workflow and interaction.

Currently, IC MAP-Elites is only used in EDD on a per room basis. Future work
should consider the whole dungeon for the evolution procedure and further develop
for the generation of complete dungeons using holistic metrics to evaluate the
dungeon.

In conclusion, based on our results, IC MAP-Elites generate more diverse levels
while retaining high-quality among them, which would result in richer and more
options and suggestions to designers. Our experiments show that which dimensions
are used significantly impact the search space, fostering the search of high-quality
individuals within the selected dimensions while not discouraging exploration
in other dimensions. This means that by editing their levels and choosing which
dimension IC MAP-Elites should focus on, the designers will be given more
meaningful choices and interactions.
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PAPER VI - TO MAKE SENSE OF PRO-
CEDURALLY GENERATED DUNGEONS
Simon Tolinsson, Alexander Flodhag, Alberto Alvarez, and Jose Font

ABSTRACT

With the growth of procedural content generation in game development, there
is a need for a viable generative method to give context and make sense of the
content within game space. We propose procedural narrative as context through
objectives, as a useful means to structure content in games. In this paper, we
present and describe an artifact developed as a sub-system to the Evolutionary
Dungeon Designer (EDD) that procedurally generates objectives for the dungeons
created with the tool. The quality of the content within rooms is used to generate
objectives, and together with the distributions and design of the dungeon, main
and side objectives are formed to maximize the usage of game space and create a
proper context.
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TO MAKE SENSE OF PROCEDU-
RALLY GENERATED DUNGEONS

Introduction

Procedural content generation (PCG) has found itself in the spotlight within
game development with games such as Minecraft [1], No Man’s Sky [2], and
Spelunky [3], improving replayability, reducing the developers’ workload, and
fostering the designers’ creativity [4–6]. However, some type of narrative or context
is required to make sense of the PCG content when implemented into the game
space [7]. An example of narrative is objectives. If there is an objective within
the content, for example, finding a sacred gem in a dangerous dungeon, then that
creates interaction between the user and the content, which creates the needed
context.

The Evolutionary Dungeon Designer (EDD) is a mixed-initiative design tool used
for creating and generating dungeons [8]. This paper gathers the first step towards
implementing a sub-system for EDD, which procedurally generates objectives for
dungeons. The current sub-system gathers and continuously adapts to the designer’s
dungeon to place different objectives based on the rooms’ content. Through this,
the designer focuses on creating the dungeon while seamlessly, they are provided
with the different generated objectives. We evaluate the artifact’s utility, quality,
and efficacy based on how well the objectives represent the layout of the dungeon
with experimental scenarios.

Related Work

The Evolutionary Dungeon Designer
EDD is a mixed-initiative tool for designers to create dungeons as a set of
interconnected tile-based rooms [8]. Each tile in a room can be modified to
represent different types of paths, obstacles or rewards, and are used to form
inventorial (Fig. 1.b) or spatial (Fig. 1.c) micro patterns. These micro patterns
can be further combined to form meso patterns (Fig. 1.d) such as treasure or
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Figure 1: The main components in EDD. (a) A basic room, (b) different placeable tiles, (c) micro
patterns and (d) meso patterns [10].

guarded rooms. Furthermore, as the designer creates rooms, EDD dynamically
offers procedurally generated room suggestions through the Interactive Constrained
MAP-Elites, using such patterns as evaluation and continuously adapting to the
designer’s design [9].

Procedural Generation of Game Narrative
Interactivity and narrative have conflicting demands [11]. With narrative, the author
decides the direction of the flow, while interactivity turns to the player for motive
power. Straying from the author’s path may make for a less satisfying story, but
restricting the player’s freedom of actions will have the same effect on the game.
But game designers are not only storytellers, but they also sculpt and design game
worlds and spaces.

Generated content needs context in the game space. A lack of context may
negatively affect user experience, with the content being perceived as empty or
meaningless [7]. The limitations of a story are related to the quest combinations
available. By understanding the structure of quests, we can also understand the
limits and potential of these kinds of games and how to create rich, open game
worlds and tell interesting stories within them [12].

The common factor with objectives in games is to provide the player a reason to
further progress through the game [7]. When generating content for game space,
narrative, or context, needs to be generated as well. In action-adventure games, the
level design is essential, and when procedurally generating levels for these games,
it is best to break down the generation process in two steps, one for generating
game space and one for generating missions [13].
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Figure 2: Every type of dungeon objective as both main objective (green) and side objective
(blue). The icons represent the different types of objectives (a) “Defeat the enemies”, (b) “Find the
treasure” and (c) “Defeat the boss”.

Charbitat bases narrative generation on sets of tiles, which partitions the game
space and creates a graph that keeps track of the player’s position. Through this,
the system evaluates new possible objectives to generate that would suit better.
This evaluation takes in mind previous objectives and actions done by the player,
resulting in a more adaptive experience while also increasing the replayability [7].

Procedural narrative generation is often approached split into two tasks, plot and
space, either automatically or manually generated [13–16]. The plot is defined as a
set of events with an overall structure that represents both the temporal ordering
and the causal relations between the events. Space includes the characters, settings,
props, and anything which is present either physically or abstractly in the space of
the narrative. By generating space, they also generate context for it, thus creating a
unique narrative for each possible outcome of the generative process.

Generating Objectives for Dungeons

Using the room’s meso patterns and their qualities, each room is assigned an
objective described in Figure 2: defeat the enemies, find the treasure, defeat the
boss, except the initial room, which is always excluded to avoid placing objectives
where the player enters the dungeon. When all rooms have been assigned an
objective, we calculate the number of objectives 𝑁𝑜𝑏 𝑗 needed for the dungeon
based on its size and layout. Furthermore, the number of objectives is calculated as
𝑁𝑜𝑏 𝑗 = max(1, 𝐷𝐸 + ((𝑅 − 𝐷𝐸)/𝐾)), where 𝐷𝐸 is the number of dead ends, 𝑅
is the total number of rooms, and 𝐾 is an adjusting variable. High values for 𝐾
lower the number of objectives per normal (non-dead end) rooms. The designer can
trigger the objective generation at any time in EDD by pressing a toggle objectives
button.
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All objectives are then sorted due to their relevance. The most relevant objective is
set as the only main objective of the dungeon. Side objectives are subsequently
assigned in descendant relevance order until the amount of objectives needed is
reached. The sorting algorithm for objective relevance evaluation calculates the
following metrics:

Dead end.

Dead ends have a higher chance of hosting interesting content for the player [7].
Therefore, to not make the outskirts of the dungeon feel meaningless, dead ends
are prioritized locations for objective placement.

Distance to the player.

Placing all objectives close to the start position, preventing full space exploration,
would break the players’ immersion [11]. Therefore, large distances (measured in
rooms) from the player are encouraged when placing objectives.

Connectivity.

Rooms connected to many rooms have a higher chance of the player passing through
them than those with fewer connections. Therefore, to foster the exploration of
these rooms, rooms with fewer connections to other parts of the dungeon will be
prioritized to have an objective.

Quality.

The objectives are based on the existing meso patterns in the room. Each meso
pattern receives a quality score [17], that when combined, create the quality of the
room.

Objectives are then sorted in sequential steps. The policy for, any given pair of
objectives, choosing the more relevant one, is:

1. Return the objective that is set in a dead end. If both are, or neither of them is,
then

2. return the objective with the largest distance to the player. If both lie at the same
distance, then

3. return the objective with lower connectivity. In case of a tie, then

4. return the objective with the highest quality score.
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Results and Discussion

We have carried out a total of 14 simulations in EDD for testing the objective
generation with a representative set of layouts, room sizes, and content. In all
figures and due to its importance in the calculations, the initial room is highlighted
in yellow. Out of experimentation, 𝐾 was set to 4, meaning that one additional
objective is generated per every 4 normal rooms in the dungeon.

Figure 3: The most simplistic layout of a dungeon with a main objective (green).

Figure 3 shows the simplest scenario (two empty interconnected rooms), where the
dead end (b) turns into a "Defeat the boss" main objective, leaving the initial room
(a) as is.

Figure 4: Small single-path dungeon layouts.

Figure 4 shows two different small sequential scenarios. In simulation (a), the
initial room is the leftmost one, and the two rightmost rooms become the side
objective and the main objective. This specific order makes use of all the available
game space. However, in simulation (b), the initial room is the second to the left.
The system adapts to this change by placing the side objective to the left of the
start position to use both dead ends and maximizing the game space usage.

Figure 5 shows two small scenarios without any dead ends. Only one objective (the

221



Figure 5: Small circular dungeons.

main one) is placed under these configurations. In both cases, to utilize most of the
dungeon layout, the room on the opposing side of the initial room gets assigned
with the main objective.

Figure 6: Large dungeon layouts with several dead ends.

Figure 6 shows results in two larger scenarios with several dead ends. In both
cases, the main objective is placed in the furthest dead end from the start position,
and side objectives with identical distance and connectivity scores are chosen
according to their quality score. Notice how a similar layout in (b) places main and
side objectives differently based on a different start position, trying to maximizing
space usage.

Figure 7: Two large circular dungeon layouts without dead ends.

Figure 7 generates objectives for larger circular dungeons with no dead ends and
(a) no content in any of the corners, and (b) corner rooms with meso patterns. In
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(a), the lack of content in the corner rooms makes the system choose objectives
in the neighboring rooms to the furthest corner. Being both equally distant from
the initial room, the “Defeat the boss” has a higher quality and is then marked as
the main goal. In (b), the corners of the dungeon layout contain content, and the
system makes use of this to generate objectives in every corner of the dungeon to
maximize the usage of game space. The remaining non-corner “Find the treasure”
side objective is prioritized over the other rooms without an objective based on its
distance from the initial room.

Figure 8: Large circular dungeons layout with dead ends.

Figure 8 introduces large circular dungeons with dead ends. In (a), the initial
room is part of the circular center of the dungeon layout, and the system generates
objectives in the various dead ends of the layout to utilize the game space. In
addition, there is a final side objective of type “Defeat the boss” which is prioritized
because of both its distance from the initial room and its lower connectivity.

In (b), the system adapts to the placement of the initial room in the dead end that
hosted the main objective in (a). The main objective is relocated to another dead
end, being one side objective now placed inside the inner circular structure of the
layout. “Defeat the boss” is still a side objective since it is connected to fewer rooms
than the remaining non-objective rooms, exhibiting the relevance order introduced
in section Generating Objectives for Dungeons.

The dungeon layout in Figure 9 is a variation of the layout in Figure 8, now showing
how the system reacts to different types and sizes of dungeon layouts with minor
changes to the dungeon content. In simulation (a), we changed the different rooms’
sizes to show that the system does not consider the size as a factor when evaluating
and assigning objectives. Therefore, the objectives in 9.a) are nearly identical to
8.b). The only difference is that the “Defeat the enemies” objective in the circular
structure is removed (see the red-bordered rooms in 8.b) and 9.a)). The reason is
that the two middle rooms in the circular structure are now combined into one big
room, thus reducing 𝑁𝑜𝑏 𝑗 from 5 to 4. In (b), the big room in the middle is now
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Figure 9: A large circular dungeon layout with dead ends, rooms of different sizes and varying
content.

Figure 10: Two different room designs shown with and without meso patterns toggled. (a) and (c)
as well as (b) and (d) are the same design. The two room designs represent the bottom room from
Figure 9.b) and c), respectively.

filled with several meso patterns to show that the system does not prioritize the
amount of content in a room when evaluating the dungeon objectives.

In (c), we showcase how the system generates objectives based on the content in
the dungeon, showing how the designer is in control of what objectives are created.
The difference between (b) and (c) is the side objective at the bottom room of the
dungeon, depicted in Figure 10.a) and b), respectively. Figure 10.c) and d) are the
meso pattern representation for Figure 10.a) and b), respectively. The meso pattern
distribution is the same, but the quality of the room as a guarded treasure pattern is
lower than its quality as a treasure room. Therefore, swapping between a) and b)
alters the nature of the objective in the room, and a "Find the treasure" objective is
placed at the bottom of 9.c) instead.
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Conclusions and Future Work

We have developed a sub-system integrated into EDD that generates suitable
objectives based on dungeon layouts created in a mixed-initiative environment.
This integration has been carried out in a harmonic way [18] with EDD’s already
existing functionalities. The developed artifact also enhances the mixed-initiative
creative loop in EDD, and helps the designer to visually validate their creation in
terms of narrative.

These contributions open a promising line of research on procedural narrative in
mixed-initiative environments. The next steps will be adding a coherent story that
ties all objectives together, as well as articulating them by means of "quest givers"
that offer different starting points for each objective. Ultimately, we will make use
of all these pieces to engineer a procedural narrative generator that intertwines
story, objectives, characters, and map. We would conduct a user study to validate
the resulting worlds with game designers and players.
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PAPER VII - QUESTGRAM [QG]:
TOWARD A MIXED-INITIATIVE QUEST
GENERATION TOOL
Alberto Alvarez, Eric Grevillius, Elin Olsson, and Jose Font

ABSTRACT

Quests are a core element in many games, especially role-playing and adventure
games, where quests drive the gameplay and story, engage the player in the game’s
narrative, and in most cases, act as a bridge between different game elements.
The automatic generation of quests and objectives is an interesting challenge
since this can extend the lifetime of games such as in Skyrim, or can help create
unique experiences such as in AI Dungeon. This work presents Questgram [Qg],
a mixed-initiative prototype tool for creating quests using grammars combined
in a mixed-initiative level design tool. We evaluated our tool quantitatively by
assessing the generated quests and qualitatively through a small user study. Human
designers evaluated the system by creating quests manually, automatically, and
through mixed-initiative. Our results show the Questgram’s potential, which creates
diverse, valid, and interesting quests using quest patterns. Likewise, it helps engage
designers in the quest design process, fosters their creativity by inspiring them,
and enhance the level generation facet of the Evolutionary Dungeon Designer with
steps towards intertwining both level and quest design.
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Questgram [Qg]: Toward a Mixed-
Initiative Quest Generation Tool

Introduction

Defining quests and related concepts have been the focus of considerable research,
where quests have been related to tasks, challenges, rewards, or as a storytelling
device adding nuances to what a quest is [1–4]. Most games have some quest
driving the game’s plot and gameplay. Adventure games, action-adventure games,
and role-playing games (RPG) are among the main genres using quests [5], where
most of these genres take place or containing some type of dungeon such as The
Legend of Zelda, Skyrim, or The Binding of Isaac. Dungeons as game content can
be defined as a single level or set of levels containing enemies, treasures, hidden
passages, puzzles, decorations, or Non-playable characters (NPC), thus creating
space that allows the player to explore the unknown areas [6]. Dungeons are a
popular level design, especially within PCG [7–9], where it has been present ever
since the 1970s in games such as Rogue.

The increasing usage of Procedural Content Generation (PCG) in both research
and industry [9, 10] has shown successful results regarding the efficiency of the
game development process [11] but also to generate a big amount of variation in
games, increasing their replayability [12]. PCG can generate game content quickly
such as missions and levels [13], content adapted to players [14], or data-driven
generation [15, 16]. Narrative and quest generation as objectives and goals has
also been the focus of PCG [17–19], where the aim has been to capture and
use quest concepts and patterns to approach the generation, such as the work by
Trenton et al. [3], Kreminski and Wardrip-fruin [20], Smith et al. [21] or Doran
and Parberry [1].

Nevertheless, much of the content is still best made by humans, especially when
subjective evaluations are needed [7]. To cope with this, one could use a mixed-
initiative approach. Mixed-initiative Co-creativity (MI-CC) was introduced by
Yannakakis et al., where both human and AI co-create and -design some game facet
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with a proactive initiative [22]. MI-CC has been explored mainly for level design
in tools such as the Sentient Sketchbook [23], Tanagra [24], Morai Maker [25],
or the Evolutionary Dungeon Designer (EDD) [26]. EDD lets the user design
interconnected room in a dungeon while receiving room suggestions adapted to
their creation. Questgram is implemented in EDD, taking advantage of its level
design capabilities and mixed-initiative approach.

This research takes the quest analysis, quest patterns, and quest grammars identified
by Doran and Parberry [1], implements it in EDD, adapts it in a mixed-initiative
approach for the creation of quest sequences, and extends it to work with level
generation. The designer can create quests by adding manually available quest
actions in a quest sequence and receive suggestions from the quest grammar
that they might use to continue the quest, replace some part of the quest, or get
inspiration to continue their quest. The available quest actions are related to the
current dungeon layout. If modifying such dungeon renders invalid current quest
parts, the designer is prompted to fix the quest manually or using actions suggested
by the system. The system was evaluated quantitatively by assessing the diversity
and incidence of quest actions, and qualitatively through a user study evaluating
the experience, usability and suitability of the system.

Related Work

Howard defined quests as "... a conceptual bridge that can help to join together
many two-part or binary pairs [...] these include game and narrative, gaming
and literature, technology and mythology and meaning and action [5]". Howard
argues that quests unify both meaning and action, where meaning hails from
strategic actions with thematic, narrative, and personal implications; and actions
being those that are meaningful for the player on the level of ideas, personal
ambitions, benefits to society, and spiritual authenticity [5]. Aarseth describes
quests as concrete and attainable goals, and such can be hierarchic, concurrent,
serial, or a combination of those. Further, Aarseth describes three basic quest
types Time-, Place-, and Objective-oriented, which can also be combined to
form seven different quest types [27]. Questgram is based on the quest analysis
and proposed grammar by Doran and Parberry, constructed and extracted from
analyzing over 750 quests from four RPGs and where they defined quests as a task
given to the player that challenges them to complete some goals in exchange for
some reward [1]. While helpful to understand quests as a whole, these definitions
create a sense of ambiguity over different concepts surrounding quests. Yu et al. [4]
proposed a generic quest definition in games that aims at unifying related concepts
that appear in most of other’s work, clearing ambiguity and easing it’s use in PCG
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quest generation tools. Formally, they define a quest as 𝑄 = ⟨𝑇, ≤, 𝑅⟩, where a
quest 𝑄 is a partially ordered set ≤ of tasks 𝑇 to be done to receive one or more
rewards from a set 𝑅, which usually are in-game items.

Story and Quest Generation
Quests are fundamental elements in most games, driving the plot and player
actions and providing goals and tasks to engage players with the game and the
narrative. Doran and Parberry analyzed quests in four RPGs and found nine different
"motivations" from NPC’s, which resulted together with a specific strategy in a
"verb-noun" pair, for example, "steal supplies" or "attack enemy". They used this
grammar to generate quests while the user chose between nine identified NPC
motivations [1]. Based on Doran and Parberry’s action classification, Breault et al.
developed an engine capable of creating quests similar to human-made ones, and
since the engine generates quests based on the world state at the time of generation,
the creation of possible quests increases as the game progresses [2].

One key characteristic in games is that they are interactive, and as such, can present
choices to players. However, quests do not tend to provide such choice, especially
in RPGs; rather, it is common that they are limited as a series of steps to follow.
An interesting approach is Questbrowser [28], a quest design brainstorming tool
where the designer can query the system for ideas, alternatives, and possibilities on
elements or concepts that foster designers’ creativity and help make quests playable
(i.e., adding choice for players). However, presenting choices to players could create
competing objectives for designers as they want to impose their narrative but, at
the same time, want to create adaptable experiences for players.

Planning algorithms are a common technique to compose stories and quests
meaningfully and with some partial-ordering [29, 30], focusing and optimizing
character believability together with multi-agent systems [31, 32], replicating
common quests and quest patterns [1, 3, 33], or identifying fundamental units and
assembling them based on various pre-conditions [20,34]. Kreminski and Wardrip-
Fruin [20] mapped and compared multiple storylets-based systems and proposed
the use of storylets, which are discrete, atomic, and recombinable narrative chunks,
to assemble narratives based on a set of preconditions to create different narrative
structures. Storylets were used by Garbe et al. in the StoryAssembler to generate
dynamic narratives, which attempts to create a valid story with a planner using a set
of provided storylets and storytelling goals that the planner uses as objective [34].

Moreover, Questgram functions within EDD’s level design tool, which means
both would function in relation to each other. Kybartas and Bidarra discussed the
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relation between plot and space, focusing on the degree of automation for story
elements. This resulted in six categories: automated space, constrained space,
space simulation, space modification, and manual space that builds a gradient
between automatic and manual generation [35]. Ashmore and Nitsche investigated
a player-centric quest generation, where the progression through level generation
is achieved with a "key and lock" structure, which results in a bridge between the
generated space and the quests [36].

Dormans and Bakkes used two grammars to generate both missions and game
space, where the latter was informed by the first. Missions are generated using graph
grammars, creating a non-linear structure suited for exploration, while extended
shape grammar generates the corresponding space required [13]. Further, Flodhag
et al. use the information from levels co-created in EDD and categorize them based
on the meso-patterns within them to present a set of main and side objectives to
designers in their dungeon [18]. Hartsook et al. explore the creation of complete
RPGs from a story created by either a computational system or human-authored
and a set of player preferences. Their approach creates and represents game worlds
as transition graphs based on a story composed of plot points, player’s playstyle
preferences, and designer constraints [37].

Mixed-Initiative Co-Creativity
MI-CC is a paradigm where both humans and AI have a proactive initiative in
the collaboration to co-create some creative content [22, 38]. Both human and AI
leverage on each other’s strengths to achieve the task and continuously negotiate to
determine roles; thus, collaborating as a team [39]. One critical aspect of MI-CC
systems is the link between these systems and theories of computational and human
creativity, where a main focus of MI-CC is on fostering human’s creativity while
reducing their workload [40, 41].

The Sentient Sketchbook is an MI-CC tool for the co-creation of strategy games
where the designer focused on creating low-resolution sketches, and the com-
putational designer suggested variations generated with different evolutionary
algorithms [23]. Cicero is an MI-CC system that helps designers create complete
games using a recommender system and A-Priori to suggest what content might
be added next regarding sprites, mechanics, rules, or interactions [42]. Another
interesting MI-CC system is Why Are We Like This? (WAWLT) where two players
can develop a story transcript while supported by an AI system with tools to inspect
the story world and with suggestions to direct the plot [43].

EDD is an MI-CC system where the designer can create interconnected rooms
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(a) Overview of the GUI used for the design of quests in EDD. 1) The possible quest actions, 2) the
dungeon created thus far by the designer, 3) the quest sequence, and 4) the suggestions from the
grammar.

(b) An example quest sequence and the user
attempting to select a suggested quest action

(c) Example of two empty and connected rooms,
where most prerequisites for quest actions are
not met.

(d) Example of the provided help for designers.
A pop-up informs them of events, and in cyan,
the A* path.

(e) Error in the quest sequence since the designer
erased a room containing quest action tiles.

Figure 1: Visualization of the GUI used for creating quest sequences and different states

that compose a dungeon while receiving a set of diverse suggestions using the IC
MAP-Elites evolutionary algorithm driven by level design patterns and considering
the designer’s current design. The designer can interact with the suggestion
system by locking tiles, editing their design, and selecting and interacting with
hyper-parameters of IC MAP-Elites [26, 44]

Quest Generation

Questgram is a quest generation tool that lets the designer compose one long
sequence of quest actions to create an overarching objective for the dungeon they
are creating. These quest actions are based on the quest analysis and classification
and produced grammar by Doran and Parberry [1]. Questgram builds on top of
EDD extending its level design and generation capabilities with a mixed-initiative
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Table 1: displaying the actions together with Doran and Parberry’s [1] prerequisites and how the
actions and the previously mentioned prerequisites have been implemented in EDD. This indirectly
explains the “unlocking” - describing what tiles that must be placed for an action to be available.
Note that “Goto” & “Explore” do not have any special tile prerequisites besides available floor.

Action Prerequisites in [1] Prerequisites in EDD
Capture “Somebody is there” A NPC or boss/enemy must be placed.
Damage “Somebody or something is there” An item or NPC must be placed.
Defend “Somebody or something is there” An item or NPC must be placed.
Escort “Somebody is there” A NPC must be placed.
Exchange “Somebody is there, they and you have something” A NPC and an item must be placed (requires two positions).
Experiment “Something is there” An item must be placed.
Explore “none” An available floor tile.
Gather “Something is there.” An item must be placed.
Give “Somebody is there, you have something.“ A NPC and an item must be placed (requires two positions).
Goto “You know where to go and how to get there.“ An available floor tile.
Kill “Somebody is there.“ A boss/enemy must be placed.
Listen “Somebody is there.“ A NPC must be placed.
Read “Somebody is there.“ A NPC must be placed.
Repair “Somebody is there.“ A NPC must be placed.
Report “Somebody is there.“ A NPC must be placed.
Spy “Somebody or something is there.“ A NPC or boss/enemy must be placed.
Stealth “Somebody is there.“ A NPC or boss/enemy must be placed.
Take “Somebody is there, they have something.“ A NPC and an item must be placed (requires two positions).
Use “There is something there.“ An item must be placed.

quest editor and takes advantage of its mixed-initiative perspective and the level
design system.

EDD was extended with some key elements such as a new quest editor view
depicted in figure 1a, and two new generic tiles; an NPC acting as quest giver
and target, and a quest item, which is the subject of many quests. These two new
tiles were kept as generic as possible for future systems to have the responsibility
of handling what type of NPC and object should replace those, similarly as with
the other tiles in EDD such as the generic enemy, boss, and treasure. These tiles,
together with the pre-existing enemy and boss tiles, have been intertwined with
the actions, resulting in the "unlocking" mechanism of different quests, which
can be observed in table 1. It must be noted that while Questgram integrates and
utilizes the different features and tiles of EDD’s level generation facet, there is
no integration of the new tiles and quests with EDD’s evolutionary algorithm IC
MAP-Elites [26]. This is left for future work.

While games can be either linear, semi-open, or open, with branching narratives and
the design structured by the types of quests featured in a game [27], with concepts
such as kernels and satelites [45]; our approach only allows for the creation of a
single overarching quest.
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Table 2: displaying the grammatical rules. The columns marked with asterisks are identified as
“motivations” by Doran and Parberry [1], but are used as a starting point for the quests. The “<>”
indicates the next production rule to be taken, and actions without “<>” is the terminating action.

Production rules Actions
knowledge* ["<get>","<go_to>","give"], ["<spy>"],

["<go_to>","listen","<go_to>","report"],
["<get>","<go_to>","use","<go_to>","give"]

comfort* ["<get>","<go_to>","give"],
["<go_to>","damage","<go_to>","report"]

reputation* ["<get>","<go_to>","give"],
["<go_to>","<kill>","<go_to>","report"],
["<go_to>","<go_to>","report"]

serenity* ["<go_to>","damage"],
["<get>","<go_to>","use","<go_to>","give"],
["<get>","<go_to>","use","capture","<go_to>","give"],
["<go_to>","listen","<go_to>","report"],
["<go_to>","take","<go_to>","give"],
["<get>","<go_to>","give"],
["<go_to>","damage","escort","<go_to>","report"]

protection* ["<go_to>","damage","<go_to>","report"],
["<get>","<go_to>","use"],
["<go_to>","repair"], ["<get>","<go_to>","use"],
["<go_to>","damage"], ["<go_to>","repair"],
["<go_to>","defend"]

conquest* ["<go_to>","damage"], ["<go_to>","<steal>","<go_to>","give"]
wealth* ["<go_to>","<get>"], ["<go_to>","<steal>"], ["repair"]
ability* ["repair","use"], ["<get>","use"], ["use"], ["damage"],

["<get>","experiment"]
equipment* ["repair"], ["<get>","<go_to>","give"], ["<steal>"],

["<go_to>","exchange"]
subquest* ["<go_to>"], ["<go_to>","<QUEST>","go_to"]
go_to ["explore"], ["<learn>","go_to"]
learn ["<go_to>","<subquest>","listen"],

["<go_to>","<get>","read"],
["<get>","<subquest>","give","listen"]

get ["<steal>"], ["<go_to>","gather"],
["<go_to>","<get>","<go_to>","<subquest>","exchange"]

steal ["<go_to>","stealth","take"], ["<go_to>","<kill>","take"]
spy ["<go_to>","spy","<go_to>","report"]
capture ["<get>","<go_to>","capture"]
kill ["<go_to>","kill"]
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Quest Actions
Doran and Parberry identified 19 different actions to be used as quest actions [1],
which we implemented and where each has its contextual prerequisites to be able
to add them. In some cases, we have decided regarding if the actor represented
in the action is friendly, e.g., NPC, or hostile, based on the tool’s nature and the
levels created. These actions are available for both the grammar and the designer to
create as many steps as wanted in the overarching quest. The actions, their original
prerequisite, and the domain-specific prerequisite are depicted in table 1.

These actions can be added one after each other in any order by the designers
allowing for combinations and quests outside of the possible grammar seen in
table 2. Besides manual creation, the designer can instead pick a suggested action
from the generated actions from the right panel, which offers the next action to be
added to the quest. After deciding these options, the user will need to press the "+"
button on the bottom panel, which will add the action to the quest sequence.

Quest Grammar
The system employs a generative grammar, specifically Lindenmayer Systems
(L-Systems) [46] to generate the different set of quests using the production rules
depicted in table 2. The production rules are divided into two categories: 1)
motivations for NPCs to start a quest such as knowledge where the focus would be
to create quests with more passive actions or reputation where the focus would be
to kill some enemy to gain reputation with some NPC. 2) Non-motivation rules
related to the development of quests (i.e., non-terminal symbols) such as "go_to"
or "get". In table 2 non-terminal symbols are represented with "<" and ">", and
terminal symbols simply list the action.

The system can be used for generating complete quests on its own, which select
one of the NPC motivations as an axiom or with the designer in a mixed-initiative
approach. As a mixed-initiative approach, the designer can manually create a quest
sequence while the system uses the current quest sequence to suggest a set of
valid quest items to the designer to continue the quest or replace a current action.
Given that the production rules are invariable, there can be situations where the
system cannot generate quests based on the quest sequence. This would result in the
designer receiving feedback that the quest is not compatible with the grammar itself,
giving the designer suggestions on how to continue and overcome this limitation.

Quest actions are suggested to continue the current sequence and append a new
action at the end, or they can be used to replace an action in any position of the
current sequence. For both, the system continuously produce quests using the
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grammar and filters out those that do not match the designer’s sequence up to
the position where they wish to change a quest action. In this way, the designer
can choose suggestions for either continuing and finishing the quest or replacing
existing parts for other valid actions.

Workflow
The GUI for the quest generation system of EDD follows the same concept and
design as the room editor for consistency. Placeable quest actions are at the left
pane, and generated suggestions with the grammar are at the right pane. The whole
dungeon can be seen on the center top pane, and at the center bottom, the designer
can compose the quest. These parts can be explicitly seen in figure 1a.

The designer cannot add any quest action, which prerequisite has not been fulfilled
yet as described in table 1 and exemplified in figure 1c. Quest actions need to be
linked to some actual tile representation in the dungeon. For instance, a "KILL"
action requires selecting an enemy, while the "GO TO" requires any floor tile.
Therefore, once the designer adds a new quest action, they must choose which tile
is linked to this, presented to the designer in green. Similarly, when a quest action
is suggested, the system randomly picks an available tile shown in purple to the
designer as shown in figure 1b.

Moreover, the sequence panel is displayed in fig. 7.4. The panel displays the actions
the user has selected. To add a sequence to the list, the user needs to manually
select an action and its desired position or select a suggested action. Both of these
options require the user to press the "+" button manually. Similarly, each quest
action in the sequence is clickable and interchangeable. If a quest action in the
sequence is selected, the designer can exchange it by selecting the quest action
desired from the action panel or from the newly suggested actions, or remove it.

Finally, the designer can toggle two different types of assistance. The first focuses
on informing the designer of changes in the sequence due to a manually placed
or automatically generated, and informs the designer of the tile that needs to be
selected. The second assistance shows A* paths between the target tile of a selected
quest action and the next target tile. Both assistance is depicted in figure 1d.

Evaluation

Questgram has undergone a two-fold evaluation, top down (expressivity analysis)
and bottom up (user study), as suggested by Shaker et al [7].
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Expressive Range Analysis
Expressive Range Analysis visualizes the expressivity and diversity of the generator
and measures variations in the generated content according to specific metrics [47].
In our case, these metrics are quest length and actions. With them, we visualize
each action’s probability to be included in a quest of any given length and the
existing dependencies between the actions and the grammar productions.

We ran the grammar using the dungeon seen in Figure 1a and created 100000 quests
with a maximum length of 50 quest actions, although the system could create on
average 146 long quests. We chose 50 quest actions because of the dungeon’s size
and what it could offer and because creating quests with more than 50 subsequent
actions are highly unlikely to find in commercial games.

Figure 2 shows the results obtained from three different perspectives. Figure 2a is
a heatmap that displays the chance (in %) for every quest action (row) to appear in
a quest of a given length (column). This shows the most frequent quest actions for
every quest length up to 50. E.g., quests with length 1, meaning that the complete
quest sequence is composed of only one action, "Repair" is that action in 60% of
the 100000 generated quests, "Damage" in 20%, and "Use" in another 20%. On the
other hand, if the quest is of length 5, the quest contains "Explore" 46% of the time,
"Take" 10%, "Kill" 7.8%, "Report" 7%, "Stealth" 6.2%, "Give" 5.2%, followed by
much lower values for the remaining actions.

Figure 2b presents the chance (in %) for every action (row) to appear at any step
of a quest (column), regardless its length. This heatmap shows how frequently a
specific action is chosen at a given quest step and how this frequency varies as
the quest length increases. For instance, on step 3, "Explore", "Take", "Gather",
"Go_To", and "Report" are the most common quests actions. However, moving
forward to step 20, "Explore", "Take", "Gather", and "Report" become less frequent,
while "Go_To", "Listen", "Read", and "Give" become more common.

Finally, Figure 3 show the most commonly generated subsequences, with a minimum
size of 3, that were produced over the 100000 generated quests.

Experiment Discussion
Results show "Explore" as the most common action among the generated quests.
Its dominance ranges from short to long quests (Figure 2a), though it is noticeable
how its chance to appear significantly drops down, from 87% to 24%, in the later
stages of a quest (Figure 2b). The main cause for this high frequency of appearance
might be that "Explore" has a quite easily fulfilled prerequisite: an available floor
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tile. While most of the other actions require NPCs, items, or both, the existence of
available floor tiles is several times higher than any of those elements. "Go_To" is
the other action with such a simple prerequisite, and its chance to appear is also
high. As opposed to "Explore", it raises from 0% to 28% in the later quest steps.
Though both actions imply space exploration, "Explore" is more commonly used
in the early stages of a quest, when the map remains uncharted, whereas "Go_To"
gets used more in the later stages, where some map locations have been already
visited. It is also remarkable that the first action in 87% of the quests is "Explore",
while the only other actions that appear in the first step (in a much lower degree)
are "Use", "Damage", and "Repair". No other actions are used as quest starters.
This "Explore" and "Go_To" dominance can also be observed in table 2, where
"Go_To" appears in 77% of the production rules, sometimes more than once per
production, and "Explore" has a 50% chance to appear per "Go_To".

The appearance rate of the combat-related actions, "Damage" and "Kill", is relatively
low, though their peak rates are located in shorter quests (Figure 2a). "Damage"
has a 21% chance to appear in quests of length 3, whereas "Kill" has its peak at
7.8% in 5-step quests. This can be extended to other actions such as "Use", "Give",
"Repair", "Gather", and "Exchange", suggesting that this subset of actions is much
more likely to appear in short, quickly solvable quests. Nevertheless, all of them
still appear in longer quests at stable rates, though movement actions are much
more predominant in the long run.

Some actions are very underrepresented regardless of quest length or step number,
as is the case for "Defend", "Report", "Experiment", "Escort", "Capture", and
"Spy". This implies that these actions have very little chance to be suggested at
any quest step, so it is more likely to end up in a quest if manually added by the
designer. A future evaluation of the utility of these actions seems interesting in
light of these results.

Finally, Figure 3 indicates a clear bias in the grammar towards exploration
("Explore" and "Go_To"), as one or both appear, at least once, in any of the most
commonly generated subsequences. The actual relevance of these dominant actions
should also be evaluated for the grammar’s future development.

User Study
Six participants tested our tool following three pre-designed tasks and questionnaires
to evaluate Questgram’s usability, functionality, and usability. They were all given
a document describing the study’s purpose and aim, a brief introduction to EDD,
and the interview overview. The users were then asked to complete three tasks
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(a) Chance (in %) for every quest action (row) to appear in a quest of a given length (column).

(b) Chance (in %) for every action (row) to appear at the Nth step of a quest (column), regardless its
length.

Figure 2: Results from the Expressive Range Analysis

that covered the tool’s functionality and different approaches to creating quests.
The tasks were to 1) manually create a quest, 2) automatically create a quest,
and 3) create a quest through mixed-initiative. They were also asked to create
a dungeon that suited their preferences and objectives before creating quests.
The questionnaire consisted of 17 closed-ended questions, and the rest were
open-ended. The interview began with a questionnaire with six questions about
the users’ background and experience within game development and finish with
questions about their experience and opinions on the tool. Both the questionnaire
and interview followed guidelines described by Oates [48].

The participants were selected through convenience sampling and were game
developers working in game and level design (2) and game development alumni
(4), without any experience with EDD or mixed-initiative tools. Five out of six
have played dungeon/adventure games and have developed some game with quests
and missions, while only two out of six have developed dungeon style games.

Manual Quest Creation

Participants reported that the tool was easy to use, clear, intuitive, and while simple
and basic, it had enough building blocks for them to create their objective quest.
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Figure 3: Most commonly generated subsequences, with a minimum size of 3.

Positive feedback was also given regarding the UI, integration with the rest of
EDD functionalities, clarity of the quest action concerning the quest, and making
the tool overall more interesting. However, some participants expressed confusion
when quest sequences became too large as they would have preferred to separate
the quests into sections or subquests. Another concern expressed was the inability
to change the order of already created quests without redoing the whole quest
sequence.

Automatic Quest Creation

Some participants reported that the system showed potential and a good addition
to the manual creation, especially for the creation of side quests such as how
similar systems work in Skyrim, and for learning how to use the tool as some kind
of tutorial. Nevertheless, most participants remarked the system as random and
illogical regarding random tile picks connected with quest actions as the system
picked farther away NPC and targets with no purpose. In addition, participants felt
that a system like this complicated the creation and took the freedom of creating
their world and ideas.

Mixed-Initiative Quest Creation

The participants described the system as helpful and useful; pointing out that the
main advantages and potentials were related to when they reached an inspiration
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blockage as the designer could get inspired by the suggestions; to allow designers
to focus on key parts of a quest sequence, and the speed gained to create quests
"in just a matter of moments." While most feedback was positive, there were still
concerns among participants regarding the system’s cohesiveness as it could feel
hard to make the suggestions cohesive with what the participant had in mind.
Nevertheless, a majority of the participants experienced that both the manual and
automatic complemented each other.

Automatic Suggestions

Participants generally described the automatic suggestions as useful to gain
inspiration, keep the quest creation diverse, and learn what could be created, rather
than useful to replace or add to their work. For instance, one participant said that
"[the system] suggested to capture a monster which had thought about killing.
The "capture" option might be more interesting and might have been an option
I had otherwise overlooked." Similarly, another participant pointed out that the
automatic suggestions "... were useful in getting inspiration for quests, and to
learn the program and what kinds of quests I was actually able to make." Usually,
designers have a predetermined idea on how they would like the narrative to
unfold. However, based on the responses we received, the system gave a different
perspective to the users on what they could create or how they could continue a
quest, which makes the tool useful for brainstorming quest design similar to tools
such as Questbrowser [28], albeit constrained to the possible quest actions.

Still, participants preferred to use the system as inspiration rather than effectively
incorporating changes to the quests. This was mainly due to the suggestion not
feeling cohesive enough with what participants created until then, and the random
tiles picked for the quest action. For instance, receiving a "GO TO" suggestion to a
random tile on the opposite side of the level and not near the player or the previous
quest action.

Quest Actions

Quest actions and their goals were perceived as easy to understand and suitable for
the type of game they were creating, except for "experiment," "stealth," and "spy,"
since they felt ambiguous and not clear for some participants. Fulfilling some quest
actions’ prerequisites was somewhat obscure, and some participants needed to
go through trial and error to gain access to the quest action. However, once they
fulfilled the prerequisites, it was clear and made sense in the context.
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Usability

All participants described the tool as a useful addition for game developers when
developing dungeon games but with different arguments and situations on when it
would be useful. For instance, to create mundane quests in games with a grinding
flow such as Diablo, to fast-prototype ideas and systems to give insights into what it
might be possible and what might work, and to complement the creation of content
and quest-design. Some participants expressed that making the game playable is a
must to get the full benefit from the tool.

Creativity

Most of the participants reported that they experienced increased creativity when
using mixed-initiative creation. The participants described that it helped when they
got stuck, and it showed different alternatives and routes they did not previously
consider. Further, one participant explained that they could make more creative
decisions and not "staying safe" and adding "extra steps" without any effort. For
instance, using a spy before a kill, thus prolonging the sequence by an extra action.
Two participants highlighted that while they did not experience increased creativity,
they saw the tool as useful when no new ideas are there given the possible "out of
the box" suggestions.

Overall Experience and Missing Features

Some participants expressed that the tool was useful for someone in the gaming
community, but it would be hard to grasp for someone unfamiliar with the concept.
Further responses were that it was simple to work with, felt scalable, and the
software’s recommendation felt useful when designing a quest. Additional response
from one participant, who, despite having no prior experience in either creating
or playing dungeon games, said it was a fun introduction to the genre and that it
was easy to learn and understand. Further, they explained that the simple workflow
inspired them to continue creating. In addition, further responses were that the
software was quick, feature-rich, simple to use, and got their creativity flowing.

In general, the participants expressed that more interaction with the quest sequence
itself, such as changing the order of subsequences, adding quest actions in arbi-
trary parts, having separate quests, or knowing which quests were manually and
automatically, would improve the system considerably.

User Study Discussion
Since we use the work by Doran and Parberry [1] as a base for the quest generation,
this research indirectly tests their quest patterns and their applicability into a
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mixed-initiative tool. We leveraged on these quest patterns similar as others have on
quest patterns [3,21], and how EDD leverages on level design patterns for the level
generation [49, 50]. The use of quest patterns greatly improves the communication
with the designers as they can use concepts they feel comfortable with and relate
better to the content they create. All of our participants confirmed the previous
statement by pointing out how the tool was straightforward, easy to understand
with quests actions to be found in any other game type, and easy to use even if they
had never used a mixed-initiative tool.

Furthermore, while relevant, the suggestions by the system felt impractical mainly
and according to participants because the system randomly assigned tiles for the
suggested quest action, which limited the tool’s perceived usability. Another reason
is the use of abstract quest actions. On the one hand, this allows us to disconnect the
system from specific implementations and gameplay functionalities of the quests,
creating and representing a more generic system. On the other hand, this resulted
in a lack of thematic and concrete elements such as NPC roles or defined plot lines
and plot elements to follow. These make it harder for designers to contextualize
their creations and why the system recommends specific quest actions.

Nevertheless, the system was helpful for creativity support and design aid as the
suggestions were used as an inspiration to what was possible and what to do next
rather than using the actual suggestion. Participants only applied suggestions when
the next step felt mundane, and the system suggested a logical position. Leveraging
on the human designer for deciding location, while the system provides the quest
actions that would follow a more typical quest based on the quest patterns would
probably compose a better collaboration.

Some feature suggestions such as separating quests or reordering the quest sequence
would have improved the user experience considerably, as after manually placing
just a few quest actions, the quest became harder to approach. Even if the system
was tested to generate 50 quest actions as explained in section Expressive Range
Analysis, this might be impractical for human designers. An interesting suggestion
was to use color tags or similar to understand which agent (Human or machine)
created the quest. Then, designers could also use this as a way to understand
decisions made by the system and for the system to create a model of the current
designer’s quests. This could also be used for a collaborative tool where several
designers interact with each other and a centralized system; for a more crowdsourced
approach such as the one proposed by Charity et al. [51].
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Conclusions and Future Work

This paper presents Questgram [Qg], a quest generation tool with a mixed-initiative
approach integrated into the Evolutionary Dungeon Designer. Questgram lets a
human designer co-create an overarching quest that fits in a dungeon level, as the
dungeon is being developed in the designer. Both map and quest are designed in
parallel and with the suggestions provided by EDD. Quests make use of Doran and
Parberry’s quest structure as production rules in a grammar so that all quests are
well-formed with respect to the grammar and the level landscape. We show results
from a two-fold evaluation, an expressive range analysis, and a user study.

The expressive range analysis shows several dominant quest actions and structures,
though all types of actions could be generated at a wide range of quest lengths. The
mixed-initiative approach was positively met by the user study participants, along
with the manual creation. However, automatic creation and automatic suggestions
received a mixed response, mainly because of a random placement of position on
the actions and the use of abstract quest actions. The tool’s overall response was
positive, and a majority of the participants reported increased creativity while using
the tool. Many participants expressed its usability to gain inspiration, as a solution
to inspiration blockages, and as a resource-efficient tool for game developers to
use. None of the testers noticed the dominance of some actions detected in the
expressive range analysis.

This inspirational use points towards the need to explore other fundamental and
more useful ways to establish effective MI-CC workflows where systems can adapt
and be effectively employed and used. For instance, some interesting future paths
would be to explore the creation of more adaptive collaboration that considers the
designer’s style or to give more autonomy to the AI to have more participation in
the creative process and its effects. Within this, one interesting area is the one of
eXplainable AI for Designers [52] where the goal is to achieve system explainability
to improve the collaboration and interaction between human and AIs.

This research sets the first step toward intertwined story and level mixed-initiative
generation on EDD, and future work could be to incorporate quest elements as
input in the level generation process so that quests and levels reciprocally influence
their generative processes [53]. Furthermore, adding semantic evaluation on the
generated suggestions would allow Questgram to generate interconnected quests
that make sense as subsequent parts of an overarching story plot involving game
elements, as well as adding a natural-language generation layer to enhance quests
with the automatic generation of detailed descriptions and narratives. Another
interesting future research would be to create designer models to adapt quest
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suggestions to the designer’s particular style [54, 55]. Finally, more extensive user
studies will be conducted to analyze further the tool’s usability and intuitiveness.
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PAPER VIII - ASSESSING THE EFFECTS
OF INTERACTING WITH MAP-ELITES
Alberto Alvarez, Jose Font, Steve Dahlskog, and Julian Togelius

ABSTRACT

MAP-Elites has been successfully applied to the generation of game content and
robot behaviors. However, its behavior and performance when interacted with in co-
creative systems is underexplored. This paper analyzes the implications of synthetic
interaction for the stability and adaptability of MAP-Elites in such scenarios. We use
pre-recorded human-made level design sessions with the Interactive Constrained
MAP-Elites (IC MAP-Elites). To analyze the effect of each edition step in the
search space over time using different feature dimensions, we introduce Temporal
Expressive Range Analysis (TERA). With TERAs, MAP-Elites is assessed in terms
of its adaptability and stability to generate diverse and high-performing individuals.
Our results show that interactivity, in the form of design edits and MAP-Elites
adapting towards them, directs the search process to previously unexplored areas
of the fitness landscape and points towards how this could improve and enrich the
co-creative process with quality-diverse individuals.
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ASSESSING THE EFFECTS OF
INTERACTING WITH MAP-ELITES

Introduction

Figure 1: Sequences of rooms used in the three scenarios, targeting (a) low leniency, (b) high
linearity, (c) and high meso-pattern concentration respectively. The leftmost and rightmost rooms
correspond to the start and end rooms in each sequence, while intermediate steps are shown in
between, limited to eight due to space restrictions.

Mixed-initiative co-creativity (MI-CC) [1], is a human-AI collaborative approach
where both human and computer have a proactive role in the creation of content [2].
Recent research shows the importance of using quality-diversity (QD) algorithms
[3,4] to better drive the evolutionary process in complex search spaces by generating
stepping stones that barely resemble the optimal solution [5]. A popular QD
implementation in recent research is MAP-Elites [6], which has been applied to
generate levels for bullet hell games [7], dungeon levels for MI-CC generation of
adventure games [8], and levels for puzzle games [9].

The rising interest of the evolutionary computation and computational intelligence
in games research community in PCG, MI-CC and MAP-Elites, calls for improving
the ways for evaluating these novel approaches. Some of the main problems in
mixed-initiative tools are the inadequate consideration of the costs and benefits
for every automated action, as well as failing to spot the opportunities for users to
guide the invocation of the automated services [10].

The area of eXplainable AI for Designers (XAID) [11] strives for achieving system
explainability necessarily built on understandings of both algorithmic properties of
the underlying AI techniques and the needs of human designers. Similarly, Compton
reflects on the grokloop [12]: the creative feedback MI-CC loop where a user builds
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a hypothesis, modifies a system, evaluates the result, and then updates the system.
Shorter grokloops improve the overall performance of the mutual inspiration, and
attempting to shorten this loop implies a clear understanding and interpretation of
the relationship between each user action and the changes that it triggers in the
system.

MAP-Elites have shown excellent results at generating QD individuals in games [13,
14], and offline adaptation based on its generated repertoire [15, 16]. However,
MAP-Elites generation capabilities have been mostly evaluated in non-interactive
scenarios and based on its final result even when used in interactive situations [8,9].
This results in a lack of research to assess the effects and consequences of interacting
with MAP-Elites, and the adaptability and stability properties of MAP-Elites in
dynamic scenarios.

Therefore, the contributions of this paper are two-fold. On the one hand, we present
Temporal Expressive Range Analysis (TERA) as a novel way to analyze interactive
PCG. TERAs allow us to inspect and analyze the changes in the expressive range
over a defined period, which in our case, are design editions. On the other hand,
using TERAs, we explored and analyzed how population dynamics react and adapt
to constant changes in the IC MAP-Elites for level generation of 2D adventure
games. IC MAP-Elites is evaluated using simulated pre-recorded design sessions
with different design goals that display the algorithm’s stability and adaptability
properties and benefits. Our results show that IC MAP-Elites stably encounters
high-performing solutions while adapting to changes in the design, and by doing
this, regions of the search space which previously seemed inaccessible are opened
for exploration.

Background

The Evolutionary Dungeon Designer (EDD) is a MI-CC tool to co-create 2D
dungeons in the style of the seminal game The Legend of Zelda [17]. Designers
manually edit the dungeon structure as well as the interior of every room in it. EDD
constantly offers tailored room suggestions on the fly that designers may decide to
incorporate to their designs at any moment.

In EDD, the system analyzes the level-design patterns (i.e., micro- and meso-
patterns) that exist in each room, calculating and utilizing their quality to assess
rooms. Micro-patterns are the building blocks in a design, which in EDD are
categorized as spatial micro-patterns: chamber, corridor, intersections, connector;
and inventorial micro-patterns: enemy, treasure, and door. On the other hand,
Meso-patterns are defined as the relation between micro-patterns or other meso-
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patterns, and by the composition between inventorial micro-patterns and spatial
micro-patterns. Meso-patterns are used to identify structures in the room that join
together a set of micro-patterns and can be: ambush, guard chamber, treasure
chamber, and guarded treasure. All patterns are shown in figure 2, and further
information and discussion can be found in [18, 19].

Methods for Evaluating PCG
Recent research focuses on methods for evaluating procedural algorithms. The
work in [20] evaluates fitness, offspring and selection for five MAP-elite methods,
whereas [21] shows how users can improve the generator with the aid of automatic
parameter tuning and, consequently, evaluates the effect that it has on the generator.
The work is continued in [22] where two analytical techniques, smoothness and
co-dependence, were introduced to analyze the impact of a parameter change
and its effect on a generative system; all integrated in Danesh [23]. Liapis et
al. [24] did a similar evaluation as the one in this paper, using artificial agents
simulating designer’s choices of suggestions to evaluate and display properties of
their designer’s model.

Previously suggested evaluation methods include a top-down approach [25, 26],
called the expressive range analysis (ERA) which refers to the idea of exploring and
visualizing the content space. Summerville [27] proposes techniques for visually
assessing and analyzing procedural systems, with other means of visual assessment
including analysis of generative space and individual procedural artefacts.

Variants of MAP-Elites
MAP-Elites, a quality-diversity (QD) algorithm, seeks to illuminate a behavior
space by trying to find the best solutions across a feature-dimension grid [6].

Figure 2: Main components in EDD. (a) Basic room, (b) different tiles, (c) micro-patterns and (d)
meso-patterns
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Feature Definitions
Similarity (Sim) Aesthetic (tile-by-tile) similarity between a gen-

erated level and the designer’s design.
Inner Similarity
(IS)

Different tiles’ sparsity and density similarity
between a generated level and the designer’s
design.

Symmetry Room’s aesthetic symmetry.
Leniency (Len) Challenge based on enemies and treasures.
Linearity (Lin) Paths that exist connecting entry points in a level.
#Meso-Patterns
(Meso)

Amount of meso-patterns that exist within a
level. This is a discrete dimension rather than
continuous.

#Spatial-Patterns
(Spa)

Amount of spatial-patterns that exist within a
level.

Table 1: Level design based dimensions used in EDD with IC MAP-Elites.

Some versions skip the grid in favour of voronoi tesselation to decide which
elite individuals to keep in the map [28]. Other works combine the effective
adaptive search of Covariance Matrix Adaptation Evolution Strategies with a map
of elites, yielding large improvements for real-valued representations in terms of
both objective value and number of elites discovered [13]. ME-MAP-Elites [29]
creates a set of emitters to focus on different optimization processes that are active
at different generations, generating higher performing and diverse individuals.

Constrained MAP-Elites [7] combines divergent search with a two-population
approach to constraint satisfaction, taken from the FI-2Pop algorithm [30]. Con-
strained MAP-Elites has been used as the basis for subsequent experiments, e.g., to
find sets of levels implementing diverse game mechanics [31]. This algorithm was
later combined with interactive evolution to yield the aforementioned Interactive
Constrained MAP-Elites [14]. Moreover, MAP-Elites has been shown to be robust at
adapting to changing conditions after running the algorithm thanks to its generated
behavioral repertoire. This was proposed and tested in the intelligent trial-and-error
algorithm [15, 16]. Related work extended MAP-Elites with Adaptive Sampling
and Drifting-Elites to be more robust in noisy environments and domains where
the fitness and behavior evaluation might be stochastic such as games [32].
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Approach

IC MAP-Elites is a variation of Constrained MAP-Elites that incorporates adaptive
mechanisms and implements continuous and interactive evolution [14]. Our
evaluation described in the following section is applied to EDD, which implements
IC MAP-Elites, allowing us to evaluate the effects and dynamics of interacting
with MAP-Elites.

EDD’s IC MAP-Elites implementation uses a single-objective weighted fitness
function with a FI2Pop genetic algorithm [30]. Individuals are deemed infeasible
when they contain unreachable areas from any of the room’s entry points and are
evaluated based on how many unreachable tiles they have. Feasible individuals are
evaluated as the following equally divided weighted sum:

𝑓 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑟) =
1
2
𝑓𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑎𝑙 (𝑟) +

1
2
𝑓𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (𝑟) (1)

This evaluation is adaptive, meaning that the tile’s ratios, patterns, and balance
between chambers and corridors are related to the target and collected by MAP-
Elites after every modification to the target. 𝑓𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑎𝑙 calculates the quality of
all inventorial micro-patterns in relation to the current edited room, and 𝑓𝑠𝑝𝑎𝑡𝑖𝑎𝑙

calculates both the quality of spatial micro-patterns and the distribution and
composition of tiles in the room described by the meso-patterns.

Seven level-design related feature dimensions are implemented in EDD. The
designer can pick dimension pairs at a time and change the dimensions’ granularity.
When the designer changes dimensions, IC MAP-Elites seamlessly reshape the
cells and move around the current elites, allowing the designer to switch between
features. The seven features are briefly described in table 1, although an extensive
discussion can be found in [14].

Experiment Setup

We have conducted a series of experiments on EDD to analyze the adaptability
and stability of IC MAP-Elites, as well as the effects of the interaction for MAP-
Elites and the user. Stability relates to the steady generation of high-performing
individuals, while gradually growing the search and stably covering the generative
space at each edit step. Adaptability relates to the ability of the search to adapt to
changing conditions, adjusting the search to the new goals, while still generating
high-performing individuals. Both features, relate to the notions of evolvability [33],
the ability of the search to generate creative individuals in problems with changing
conditions.
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Dimensions Low Leniency Scenario
♢ † ⃝

Len-Meso ★56.6% ★19.46±5.55 0.96±0.013
Len-Spa 71.4% ★19.34±7.979 0.94±0.016
Lin-Meso 78.7% 43.5±3.76 0.92±0.013
Lin-Spa ★57.8% 28.28±4.109 0.92±0.011
Meso-Spa 78.9% 27.15±7.315 0.93±0.012
Sym-Len 68.1% 21.54±5.88 0.97±0.014
Sym-Spa 83.4% 24.87±10.334 0.95±0.014
Sim-Lin 58.4% 30.78±2.602 ★0.9±0.012
Sim-Meso 62.3% 27.98±3.385 ★0.9±0.014
Sym-IS 70.8% 21.63±3.877 0.96±0.011
Average. 67.09±3.35 25.75±2.48 0.93±0.01
Dimensions High Linearity Scenario

♢ † ⃝
Len-Spa 72.6% ★16.31±3.035 0.91±0.006
Lin-Meso 67.2% 40.79±3.221 0.85±0.015
Lin-Spa 62.7% 33.55±0.963 ★0.84±0.013
Sym-Len 72.6% 20.5±2.646 0.94±0.008
Sym-Lin 84.3% 37.94±2.103 0.87±0.013
Sym-Spa 85.5% 18.94±4.366 0.92±0.011
Sim-Len ★58.7% 20.93±2.174 0.87±0.011
Sim-Lin 62.3% 27.78±1.424 ★0.84±0.014
Sim-Meso 68% 25.6±1.946 ★0.84±0.011
Sym-IS 82.8% 21.24±3.005 0.94±0.011
Average. 71.8±3.12 24.52±2.81 0.89±0.01
Dimensions High Meso-Pattern Scenario

♢ † ⃝
Len-Lin ★56.3% 32.49±1.536 0.92±0.007
Lin-Spa ★55.7% 30.47±1.959 0.9±0.007
Sym-Len 65.7% ★22.73±5.025 0.96±0.009
Sym-Lin 83.4% 44.4±1.019 0.93±0.007
Sym-Meso 83.6% 38.45±5.136 0.96±0.01
IS-Meso 90.2% 34.82±3.749 0.95±0.009
Sim-IS 59.9% ★21.16±2.237 0.91±0.009
Sim-Lin 66.3% 36.29±1.585 ★0.89±0.008
Average. 72.34±4.12 29.88±2.84 0.93±0.01

Table 2: Results from the three metrics in all scenarios across the relevant dimension pairs. ♢
relates to coverage, † relates to average coverage per step, and ⃝ average population fitness
throughout all generations. Higher scores per column are highlighted in bold. ★ marks the lower
values. Confidence intervals are shown for each average value (†, and ⃝), and in the last row we
show the average of all the 21 dimensions per metric and scenario.
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Figure 3: Aggregated TERA using Sym and Len following the low leniency scenario (fig. 1.a).
Highlights how the design introduces new generative region to the algorithm. In red (step 12) it
is highlighted when the design enters a new region of the space and MAP-Elites is then able to
generate individuals in that region, explained in detail in Case 1.

We recorded three different design sessions, called scenarios, where we manually
designed, step by step, dungeon rooms with specific target design goals. They are
shown in Figure 1: a) a boss room - identified as a low leniency design goal; b) a
linear room with specific paths and targets - identified as a high linearity design
goal, and finally, c) a room where each chamber within is usable - identified as a
high meso-pattern design goal. We chose these design goals as they represent key
metrics with clear distinct representative goals and design styles that one might
create in a dungeon.

The experiments consist on running these pre-recorded scenarios separately on
EDD, step by step with a lapse of 100 evolutionary generations between steps.
Each scenario implies 21 evolutionary runs, one per each pair of feature-dimension,
where the dimensions are (table 1): leniency (len), linearity (lin), spatial patterns
(spa), meso-patterns (meso), symmetry (sym), similarity (sim), and inner similarity
(IS). Each edition (i.e., design step) is included as-is in the population and used
as a target in the fitness function by IC MAP-Elites, updating corridor, chamber,
and inventorial ratios affecting the quality of micro and meso patterns. Every 100
generations we collect the novel generated individuals to later analyze how the
search and the fitness landscape vary after each design step. Step after step, we
measure how the explored generative space grows, as well as how distribution
and concentration of elites together with the manually edited room traverse the
generative space.

In all the experiments, the initial population was set to 1000 mutated individuals.
All cells were set to a maximum capacity of 25 individuals each. In every generation,
we selected 5 cells random, and 5 parents per cell through tournament selection. The
random selection followed a uniform distribution. Offspring were produced through
a two-point crossover and a 30% mutation chance. Using this setup, between 150
to 2001 individuals were produced every 100 generations, with an average of 373
unique individuals generated every 100 generations throughout all runs.
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Figure 4: Aggregated TERA using Len and Meso following the high linearity scenario (fig. 1.b).
Highlights subtle discovery of new generative regions. In red (step 12), this subtle discovery is
highlighted, explained in detail in Case 2.

Metrics
All our experiments are evaluated and analyzed following the same procedure and
metrics, focusing in the novel generated individuals. In particular, we calculated the
coverage (♢), the average coverage per step (†), and average fitness (⃝). Coverage
relates to the percentage of space covered by the search in total and is calculated
as the cumulative amount of covered hexagons at the final step divided by the
maximum amount in our experiments. Average coverage relates to the average
coverage per step, i.e., how much of the space is covered at each design step in
average, calculated as the cumulative coverage per step divided by the amount of
design editions. Finally, average fitness calculates the average individual fitness in
the search throughout all generations.

Results and Analysis

Table 2 shows an extract of all test results. The results were filtered to only show the
pair of dimensions with the lowest or highest values in different metrics. This means
that some pair of dimensions are not shown since all their metric values were in
between lower and higher scores. Each subtable represents one of the three design
scenarios, each of them displaying the metrics described above. The higher and
lower scores per column are highlighted in bold and with★, respectively. Confidence
intervals are shown per value when using averages. In general, table 2 shows IC
MAP-Elites’ stability to cover the space while encountering high-performing
individuals; thus, it is able to adapt to the new editios which change the fitness
landscape. Coverage (♢), supported by average coverage per step (†) and average
fitness (⃝), shows that in average the algorithm keeps exploring and generating
novel and high-performing individuals rather than sporadically generating them.
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The symmetry and spatial pattern (Sym-Spa) dimension pair explore and cover on
average more of the space across all scenarios than others (♢). In general, when
using either sym or spa, MAP-Elites is pressured to generate content that maximizes
the utility of walls since both use walls as a core building block. Similarly, Meso
and IS are two other dimensions that perform well with others, especially Meso.
However, Meso requires combination of shapes with walls and correct placement
of tiles; thus, in principle involving more complex operations to achieve high
dimensional values.

Overall the average population fitness (⃝) is very high with 0.915 in average (of a
maximum 1.0) with a narrow confidence interval ±0.01. Symmetry and leniency
(Sym-Len) scored the highest in all scenarios while Similarity and Linearity
(Sim-Lin) scored the lowest. This shows a stable behavior in the IC MAP-Elites
as that the average quality of individuals is high even when large portions of the
generative space are explored (high diversity), and regardless of the dimension pair
chosen.

IC MAP-Elites works in constant interaction with the edited design. Each step re-
shapes the fitness landscape to a certain extent, which could hinder the evolutionary
process. However, per step, an avg. of 27.34% of the space is covered by generating
novel individuals (i.e., not encountered previously in the population). This, coupled
with the relatively narrow confidence intervals, means that the search is constantly
exploring the space, diversifying and encountering new spaces. However, as it
will be exemplified through the cases, the implicit explorative and exploitative
mechanisms of MAP-Elites might not be enough to explore new regions, which
can be introduced interactively to MAP-Elites.

The following cases examine TERAs following the different scenarios presented
in figure 1. Different cases will use either an aggregated TERA step by step or
a non-aggregated version showing each step’s specific scores in the evaluated
dimensions. Each figure’s caption and respective case will indicate what type of
TERA is used. Non-Aggregated TERAs show the delta maps in the search, meaning
where the search has focused and the space covered for a specific step. On the other
hand, aggregated TERAs show the density of generated individuals over all steps
and the coverage up to the specific step. In each TERA, we also show as an orange
dot where the current design is in relation to the used and tested dimensions. Case 1
and 2 examine aggregated TERAs, while case 3 examines non-agreggated TERAs.
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Figure 5: Non-aggregated TERA using Sym and Meso following the high meso-pattern level
scenario (fig. 1.c). Highlights overall properties of interacting with MAP-Elites.a, b, and c,
represent the main areas of focus explained in detail in Case 3.

Case 1 - Design Opens New Regions of the Generative
Space
In this case, we analyze the interaction with IC MAP-Elites through examining
the generative space when using Sym and Len as dimensions (figure 3) following
the low leniency scenario depicted in figure 1.a. The scenario aimed to gradually
increase the room’s challenge while dividing it into two clear and connected areas.

Table 2 shows that this pair of dimensions do not have the best scores except
for the 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (⃝). This indicates that these dimensions are able to stably find
high-performing individuals (above the avg.) while adapting to the new designs
exploring an average of 21.54 and a total of 68.1%. Moreover, in fig 3, for several
steps, half of the generative space is completely unexplored, which could indicate
that in those regions, dimensions would be mutually exclusive.

However, at step 12 (highlighted in red in fig 3), when reaching a low leniency score,
the design enters an unexplored region of the generative space, which subsequently
enables IC MAP-Elites to search and generate high-performing individuals in
the new region. Furthermore, there is a significant rise in the number of unique
individuals generated with a high concentration on the new region, spreading over
the already explored space.

Case 2 - Subtle Changes in the Design Reflected in the Gen-
eration of MAP-Elites
Case 1 showed that by entering an unexplored region of the generative space,
the designer could show possibilities for the algorithm and influence the search,
yet more subtle guidance is possible. Figure 4 presents such a case. We focus
on the high linearity scenario (fig. 1.b), where the goal was to create a single
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narrow corridor between the top and left door and add some objective at the
bottom entrance. Through this, we not only aimed at high linearity but also tried to
promote other main characteristics such as the open chamber/corridor balance, or
the combination of meso-patterns.

Similar to the previous case, in figure 4, it is shown that for many steps, the search
does not explore a big part of the generative space. In this case, the room does not
move either in the generative space as the changes are not affecting the dimensions.
However, between steps 13 to 17, a new region of the generative space is filled
(highlighted in red in fig 4), which indicates that even if changes in the room do
not have a direct influence by moving in the generative space, they still can foster
exploration in new regions. These main steps are visible in fig. 1.b, subfigure
5, and 6 from the left. Specifically, lower leniency regions are generated once
the room is divided into a representative corridor and a big open area with a
treasure meso-pattern. These stepping-stones gave the needed “building blocks”
to MAP-Elites to cross and mutate until the new generative space was explored.
Moreover, similarly to the previous case, the algorithms generates significantly
more novel individuals during this time (around 531 novel individuals), and the
search covers 20% of the space, exploiting the new region, akin to Novelty search
behavior [34].

Case 3 – Exploring Multiple Properties
In this case, we analyze the TERA of unique individuals generated each step using
Sym and Meso as dimension pairs (fig. 5). We heed to the high meso-pattern level
scenario (fig. 1.c), where we subdivided the room into small open chambers with
clear objectives. Overall, in fig. 5 two aspects stand out; firstly, the generative space
is explored more at the early steps, as there are fewer constraints from the edited
design. Secondly, the generated individuals seem to follow the path taken by the
design in the generative space. Supported by the other cases, this indicates that the
design can filter the search and point regions of interest for the IC MAP-Elites.

Moreover, opposite to case 1 and as a consequence of filtering the generative
space, when the design leaves low scoring regions, the algorithm rapidly disregards
creating individuals in those spaces. For instance, the bottom region after step 7
(fig. 5.a). Further, as the room is changing but without any type of influence in
the searched dimensions e.g., steps 12 to 15 (fig. 5.b), MAP-Elites has difficulties
exploring the space. A similar challenge was discussed by Alvarez et al. [14], where
their experiments showed that the search got to a plateau after 1000 generations
due to the MAP-Elites lacking the incentive to explore. Even if their experiments
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focused on static environments, this case gives further evidence that minimal
changes to the design and lack of influence in the generative space, conditions the
exploration of space and the generation of novel individuals.

Lastly, at step 16 (fig. 5.c), we encounter a similar situation as with fig. 4; where a
design edition enables the needed “building blocks” for MAP-Elites. In this case,
it was triggered by the forming of a dead-end chamber pattern, which enables even
more meso-patterns to be used and discovered. Rather than finding a new region of
the generative space, this time, the search gets rebooted, and therefore, explores all
regions generating novel individuals.

Discussion

Our evaluation shows that IC MAP-Elites has a high degree of adaptability to
dynamic environments, adapting the generated content to the design process and
design goals while stably generating high-performing and diverse solutions. For
MI-CC systems and interactive approaches as in EDD, this is especially relevant
and important. The fitness function adapts to the current design; thus, adaptability
and stability go hand in hand. Furthermore, the deployment of an MI-CC approach
in a scenario as the ones presented would benefit both Map-Elites and the human
designer. On the one hand, it enables MAP-Elites to explore more of the generative
space while producing quality solutions. On the other hand, users would have more
control over the suggestions as they seamlessly influence and guide the search and
generation with their design, in a similar approach to Anderson et al., who explored
explicit human guidance in the automated solution search [35].

We also observe that when using Linearity as a dimension, IC MAP-Elites performed
quite stably in all our scenarios regardless of the design traversing around the
generative space or not, which indicates that Linearity is more robust and stable
and more agnostic and independent from the design. These characteristics are
beneficial in certain cases, but based on the results presented in table 2, this stability
comes at the expense of adaptability and higher fitness scores.

Furthermore, Alvarez et al. [14] presented an analysis of IC MAP-Elites in a static
scenario, where on average the covered space of MAP-Elites after 5000 generation
was 52.4% using pair of dimensions and 51.7% using all seven dimensions.
Our results show a clear advantage for MAP-Elites when used continuously and
interactively with an avg. coverage of 70.9%. However, when the design remains
still in the space defined by the dimensions, exploration is hindered; thus, what
dimensions are used and how the design maps to them is crucial.

Finally, we used and introduced TERAs to analyze the dynamic behaviors in

268



generative systems and algorithms, and observe the effects of changes over time
in the expressive range based on the edition steps. We used two variations, non-
aggregated TERA, which shows the delta maps of the search, and aggregated
TERA, showing the search density and aggregated results. TERAs are generic and
could be used with other generative system to evaluate their dynamics by simply
defining a pair of features and a step period such as design editions, amount of
generations, or whenever a suggestion is applied. TERAs can also be used to spot
key and non-trivial steps or changes that have an effect in the search, which can
help to understand more in-depth the sensibility of the algorithm and the system.

Conclusions and Future Work

This paper analyzes and evaluates the benefits of dynamically interacting with
quality-diversity algorithms, specifically, the IC MAP-Elites. We have examined
the adaptability and stability of MAP-Elites in relation to 21 dimension pairs
highlighting different characteristics and properties through different simulated
design scenarios. We examined key metrics when exploring the generative space,
as depicted in table 2, and conducted three different case studies that highlighted
different dynamics with the algorithm.

While our results show several MAP-Elites’ properties and promising ways to
improve the MI-CC workflow, further evaluation is needed with human users to
assess these properties in-the-wild and evaluate the interactive dynamic between
humans and algorithms. To further highlight the importance of interaction, it
would be interesting to analyze and compare with MAP-Elites disabling adaptive
mechanisms (i.e., rendering the algorithm static and agnostic to changes) and with
other non QD algorithms. Likewise, another interesting project for future work,
would be to use TERAs to compare IC MAP-Elites with other co-creative systems
using other algorithms such as reinforcement learning [36,37] or constraint solving
algorithms [38].

Finally, a promising step is to analyze MAP-Elites together with surrogate designer
models that capture preference, style, and design processes [39–41], and how
these influence the properties discussed in this paper. For instance, Designer
Personas [41] could be used to explore how the user’s design moves through the
space, identifying possible paths, and analyzing if changes, i.e., moving between
style clusters, connect to key moments in the search.

269





References

[1] G. N. Yannakakis, A. Liapis, and C. Alexopoulos, “Mixed-initiative co-
creativity,” in Proceedings of the 9th Conference on the Foundations of
Digital Games, 2014. 257

[2] A. Liapis, G. N. Yannakakis, and J. Togelius, “Generating Map Sketches for
Strategy Games,” in Proceedings of Applications of Evolutionary Computa-
tion, vol. 7835, LNCS, Springer, 2013. 257

[3] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new frontier
for evolutionary computation,” Frontiers in Robotics and AI, vol. 3, p. 40,
2016. 257

[4] D. Gravina, A. Khalifa, A. Liapis, J. Togelius, and G. N. Yannakakis,
“Procedural content generation through quality diversity,” in 2019 IEEE
Conference on Games, 2019. 257

[5] A. Gaier, A. Asteroth, and J.-B. Mouret, “Are quality diversity algorithms
better at generating stepping stones than objective-based search?,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion,
pp. 115–116, ACM, 2019. 257

[6] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping elites,”
preprint arXiv:1504.04909, 2015. 257, 259

[7] A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet hell gener-
ation through constrained map-elites,” in Proceedings of The Genetic and
Evolutionary Computation Conference, ACM, 2018. 257, 260

[8] A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Empowering quality
diversity in dungeon design with interactive constrained map-elites,” in 2019
IEEE Conference on Games (CoG), 2019. 257, 258

271



[9] M. Charity, A. Khalifa, and J. Togelius, “Baba is y’all: Collaborative mixed-
initiative level design,” in 2020 IEEE Conference on Games (CoG), pp. 542–
549, 2020. 257, 258

[10] E. Horvitz, “Principles of mixed-initiative user interfaces,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’99,
(New York, NY, USA), p. 159–166, Association for Computing Machinery,
1999. 257

[11] J. Zhu, A. Liapis, S. Risi, R. Bidarra, and G. M. Youngblood, “Explainable ai
for designers: A human-centered perspective on mixed-initiative co-creation,”
in 2018 IEEE Conference on Computational Intelligence and Games (CIG),
pp. 1–8, Aug 2018. 257

[12] K. Compton, “Casual creators: Defining a genre of autotelic creativity support
systems.” PhD Dissertation, University of California Santa Cruz, 2019. 257

[13] M. C. Fontaine, J. Togelius, S. Nikolaidis, and A. K. Hoover, “Covariance
matrix adaptation for the rapid illumination of behavior space,” in Proceedings
of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20,
p. 94–102, 2020. 258, 260

[14] A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Interactive constrained
map-elites: Analysis and evaluation of the expressiveness of the feature
dimensions,” IEEE Transactions on Games, pp. 1–1, 2020. 258, 260, 261,
267, 268

[15] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can adapt like
animals,” Nature, vol. 521, pp. 503–507, May 2015. 258, 260

[16] M. Gonzalez-Duque, R. Berg Palm, D. Ha, and S. Risi, “Finding game levels
with the right difficulty in a few trials through intelligent trial-and-error,” in
Proceedings of the IEEE Conference on Games, 2020. 258, 260

[17] Nintendo R&D4, “The Legend of Zelda.” Game [NES], 1986. Nintendo,
Kyoto, Japan. Last played December 2017. 258

[18] A. Baldwin, S. Dahlskog, J. M. Font, and J. Holmberg, “Towards pattern-
based mixed-initiative dungeon generation,” in Proceedings of the 12th
International Conference on the Foundations of Digital Games, FDG ’17,
(New York, NY, USA), ACM, 2017. 259

272



[19] A. Alvarez, S. Dahlskog, J. Font, J. Holmberg, C. Nolasco, and A. Österman,
“Fostering creativity in the mixed-initiative evolutionary dungeon designer,”
in Proceedings of the 13th International Conference on the Foundations of
Digital Games, FDG ’18, 2018. 259

[20] D. Gravina, A. Liapis, and G. N. Yannakakis, “Blending notions of diversity
for map-elites,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’19, (New York, NY, USA), pp. 117–118,
ACM, 2019. 259

[21] M. Cook, J. Gow, and S. Colton, “Towards the automatic optimisation of
procedural content generators,” in 2016 IEEE Conference on Computational
Intelligence and Games (CIG), Sep. 2016. 259

[22] M. Cook, S. Colton, J. Gow, and G. Smith, “General analytical techniques for
parameter-based procedural content generators,” in 2019 IEEE Conference
on Games (CoG), Aug 2019. 259

[23] M. Cook, J. Gow, G. Smith, and S. Colton, “Danesh: Interactive tools for
understanding procedural content generators,” IEEE Transactions on Games,
pp. 1–1, 2021. 259

[24] A. Liapis, G. N. Yannakakis, and J. Togelius, “Designer modeling for sentient
sketchbook,” in 2014 IEEE Conference on Computational Intelligence and
Games, pp. 1–8, Aug 2014. 259

[25] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games, (New York, NY, USA), ACM, 2010. 259

[26] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. Togelius, “A comparative
evaluation of procedural level generators in the mario ai framework,” in
Proceedings of the 9th International Conference on the Foundations of
Digital Games, FDG ’14, 2014. 259

[27] A. Summerville, “Expanding Expressive Range: Evaluation Methodologies
for Procedural Content Generation,” in Proceedings of the 14th AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment, 2018.
259

[28] V. Vassiliades, K. I. Chatzilygeroudis, and J. Mouret, “Scaling up map-elites
using centroidal voronoi tessellations,” CoRR, vol. abs/1610.05729, 2016.
260

273



[29] A. Cully, “Multi-emitter map-elites: Improving quality, diversity and conver-
gence speed with heterogeneous sets of emitters,” in Proceedings of the 2021
Genetic and Evolutionary Computation Conference, GECCO ’21, 2021. 260

[30] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible–
infeasible two-population (fi-2pop) genetic algorithm for constrained optimiza-
tion: Distance tracing and no free lunch,” European Journal of Operational
Research, vol. 190, no. 2, pp. 310–327, 2008. 260, 261

[31] M. Charity, M. C. Green, A. Khalifa, and J. Togelius, “Mech-elites: Illumi-
nating the mechanic space of gvg-ai,” in International Conference on the
Foundations of Digital Games, pp. 1–10, 2020. 260

[32] N. Justesen, S. Risi, and J.-B. Mouret, “Map-elites for noisy domains by adap-
tive sampling,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’19, (New York, NY, USA), pp. 121–122,
Association for Computing Machinery, 2019. 260

[33] S. Doncieux, G. Paolo, A. Laflaquière, and A. Coninx, “Novelty search
makes evolvability inevitable,” in Proc. of the Genetic and Evolutionary
Computation Conf., GECCO ’20, 2020. 261

[34] A. Liapis, G. N. Yannakakis, and J. Togelius, “Constrained novelty search:
A study on game content generation,” Evolutionary Computation, vol. 23,
no. 1, pp. 101–129, 2015. 267

[35] D. Anderson, E. Anderson, N. Lesh, J. Marks, B. Mirtich, D. Ratajczak, and
K. Ryall, “Human-guided simple search,” in AAAI/IAAI, pp. 209–216, 2000.
268

[36] O. Delarosa, H. Dong, M. Ruan, A. Khalifa, and J. Togelius, “Mixed-initiative
level design with rl brush,” in 10th International Conference on Artificial
Intelligence in Music, Sound, Art and Design, EvoMUSART 2021 held as
Part of EvoStar 2021, pp. 412–426, Springer, 2021. 269

[37] M. Guzdial, N. Liao, and M. Riedl, “Co-creative level design via machine
learning,” in Proceedings of the 5th EXAG Workshop at AIIDE, 2018. 269

[38] I. Karth and A. M. Smith, “Addressing the fundamental tension of pcgml with
discriminative learning,” in Proceedings of the 14th International Conference
on the Foundations of Digital Games, FDG ’19, (New York, NY, USA),
Association for Computing Machinery, 2019. 269

274



[39] A. Liapis, G. Yannakakis, and J. Togelius, “Designer modeling for person-
alized game content creation tools,” in Artificial Intelligence and Game
Aesthetics - Papers from the 2013 AIIDE Workshop, Technical Report,
vol. WS-13-19, pp. 11–16, AI Access Foundation, 2013. 269

[40] A. Alvarez and J. Font, “Learning the designer’s preferences to drive evolution,”
in Applications of Evolutionary Computation, vol. 12104 of Lecture Notes in
Computer Science, (Cham), pp. 431–445, Springer International Publishing,
2020. 269

[41] A. Alvarez, J. Font, and J. Togelius, “Designer modeling through design style
clustering,” Arxiv, 2020. Preprint available: https://arxiv.org/abs/2004.01697.
269





PAPER IX - DESIGNER MODELING
THROUGH DESIGN STYLE CLUSTERING
Alberto Alvarez, Jose Font, and Julian Togelius

ABSTRACT

We propose modeling designer style in mixed-initiative game content creation tools
as archetypical design traces. These design traces are formulated as transitions
between design styles; these design styles are in turn found through clustering all
intermediate designs along the way to making a complete design. This method
is implemented in the Evolutionary Dungeon Designer, a research platform for
mixed-initiative systems to create adventure and dungeon crawler games. We
present results both in the form of design styles for rooms, which can be analyzed
to better understand the kind of rooms designed by users, and in the form of
archetypical sequences between these rooms, i.e., Designer Personas.
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DESIGNER MODELING THROUGH
DESIGN STYLE CLUSTERING

Introduction

How can we best build a system that lets a human designer collaborate with proce-
dural content generation (PCG) algorithms to create useful and novel game content?
Collaboration between AI and humans to co-design and co-create content is a
major challenge in AI, and the main focus of Mixed-Initiative Co-Creativity [1, 2].
These systems’ objectives are to foster creativity and provide seamless proactive
collaboration; ultimately enabling a colleague relation and collaboration as de-
scribed by Lubart [3]. However, there needs to be an understanding between the
human designer and the AI system about what needs to be designed, ideally even a
shared goal.

Reaching such a shared understanding is a hard task, even when both collaborators
share significant cultural and professional backgrounds. However, we can take
steps towards the goal of shared understanding. One idea is to train a supervised
learning model on traces of other collaborative creation sessions and try to predict
the next step the human would take in the design process. The main problem with
this is that people are different, and creators will want to take different design
actions in the same state. Another problem is what to do in design states that have
not been encountered in the training data. To remedy this, it has been proposed
to train multiple models, predicting the next step for different designer “personas”
(akin to procedural personas in game-playing [4]). However, for such a procedure
to be effective, we need to have sufficient training data. The more different designer
personas there are, the more training data is necessary.

One way of overcoming this problem could be to change the level of abstraction at
which design actions are modeled and predicted. Instead of predicting individual
edits, one could identify different styles or phases of the artifact being created
and model how a designer moves from one to another. To put this concretely in
the context of designing rooms for a Zelda-like dungeon crawler [5], one could

279



classify room styles depending on whether they were enemy onslaughts, complex
wall mazes, treasure puzzles, and so on. One could then train models to recognize
which types of rooms a user creates in which order. By clustering sequences of
styles, we could formulate designer personas as archetypical trajectories through
style space rather than as sequences of individual edits. For example, in the context
of creating a dungeon crawler, some designers might start with the outer walls of
the rooms and then populate it with NPCs, whereas another type of designer might
first sketch the path they would like the player to take from the entrance to the exit
and then add parts of the room outside the main path. These designer models could
then be combined with search-based [6] or other procedural generation methods [7]
to suggest ways of getting to the next design style from the current one.

In this paper, we present a method to create and identify designer personas as
archetypical paths through style space and provide a prototype implementation
of it. For this, we use the Evolutionary Dungeon Designer (EDD), a research
platform for exploring mixed-initiative creation of adventure and dungeon crawler
content [8, 9]. Data from 48 users designing game levels with the tool following
different goals and styles have been used to fit the models. Based on this data, we
clustered room styles to identify a dozen distinct types of rooms. To understand the
typical progress of designers and validate the clustering, we visualize how typical
design sessions traverse the various clusters. We also perform frequent sequence
mining on the design sessions to find a small handful of designer personas.

Background

Player modeling, the ability to recognize general socio-emotional and cogni-
tive/behavioral patterns in players [10], has been appointed by the game research
community as an essential process in many aspects of game development, such as
designing of new game features, driving marketing and profitability analyses, or as
a means to improve PCG and game content adaptation. Player modeling frequently
relies on data-driven and ML approaches to create such models from user data or
user-generated gameplay data [4, 11–13].

Modeling users and players can have different goals and use multimodal data. User
data can be used to understand and enable behavior for agents in games. For instance,
Melhart et al. model a user’s Theory of Mind, finding that players’ perception of
an agent’s frustration is more a cognitive process than an affective response [11].
Alvarez and Vozaru explored personality-driven agents, evaluating how observers
judged and perceived agents using their personality data from their personality
tests when encountering multiple situations [14]. Gameplay data can show player
behavior, as well as help developers understand their player base. Melhart et al.
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used gameplay data from Tom Clancy’s The Division to find predictors of player
motivation [12], and Drachen and Canossa used playing behavior data from Tomb
Raider Underworld and identified four types of players as behavior clusters, which
provide relevant information for game testing and mechanic design [15].

Furthermore, the combination of Machine Learning (ML) with PCG has led to the
rise of Procedural Content Generation via Machine Learning (PCGML), defined
as the generation of game content by models that have been trained on existing
game content [16]. PCGML has been used for autonomous content generation,
content repair, content critique, mixed-initiative design, or content adaptation. A
promising PCGML usage is in the area of content adaptation, where using player
and user models are essential to adapt the generated content [17–19].

Content adaptation can take place as players play or use the content online or
offline, building models from collected data. For instance, Duque et al. adapt and
adjust the difficulty of generated content as players play the game using bayesian
optimization [17]. Summerville et al. model players automatically and implicitly
by learning from video traces; generating levels that correspond to the latent player
models [20]. Player models can also be used to enhance and adapt design tools,
specifically MI-CC tools. Migkotzidis and Liapis use player models as surrogate
models to generate content assisting game designers in the creation of more relevant
content for specific players [21]. Similarly, Holmgård et al. use player personas
based on player archetypes as content critics to help designers adapt their content
to different archetypes [4]. Their work on player personas is similar to our proposed
work, yet instead of personas based on player archetypes, we propose personas
based on design style.

Designer-centric Perspective
Mixed-initiative co-creativity (MI-CC) [1], is the subset of PCG algorithms where
human users and AI systems engage in a constant mutual inspiration loop towards
the creation of game content [22–26]. Understanding the designer’s behavior and
experience, as well as predicting their intentions is key for mixed-initiative creative
tools while aiming to offer in real-time user-tailored procedurally generated content.

While player modeling is key for generating content adapted to players, adapting
tools, systems, and AI methods for designing games requires a shift towards a
designer-centric perspective, focusing on Designer Modeling. Designer Modeling,
akin to player modeling, refers to the creation of models of either individual
designers or groups of designers informed by how they create various types
of content. Liapis et al. [27, 28] introduced designer modeling for personalized
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experiences when using computer-aided design tools, with a focus on the integration
of such in automatized and mixed-initiative content creation. The focus is on
capturing the designer’s style, preferences, goals, intentions, and iterative design
process to create representative models of designers.

EXplainable AI (XAI) is an emergent research field that holds substantial promise for
improving model explainability while maintaining high-performance levels [29,30].
Explanations should be aligned with the users’ understanding to not hinder the
usability of systems, as demonstrated by Nourani et al. [31], who discuss the effects
of meaningful and meaningless explanations to users of an AI interactive systems.

Zhu et al. [32] proposed the field of eXplainable AI for Designers (XAID) as a
human-centered perspective on MI-CC tools. This work discusses three principles
of mixed-initiative, explainability, initiative, and domain overlap, where the latter
focuses on the study of the overlapping creative tasks between game designers
and black-box PCG systems in mixed-initiative contexts. This work deems of
high relevance the inclusion of data-driven and trained artifacts to facilitate a
fluent bi-directional communication of the internal mechanisms of such a complex
co-creative process in which the designer provides the vision, the AI provides
capabilities, and they merge that into the creation. Mapping the designer’s internal
model to the AI’s internal model is suggested as a meaningful way for creating a
common ground that establishes a shared language that enables such communication.
Our method, and designer modeling in general, aims to develop this designer’s
internal model to enhance MI-CC tools by adapting the AI’s functionality towards
designers’ needs and aligning to their objectives.

Moreover, Guzdial et al.’s [33] discuss the insufficiency of current approaches to
PCGML for MI-CC, as well as the need for training on specific datasets of co-
creative level design. Guzdial et al. work on the mixed-initiative Morai Maker [34]
shows the relevance of exploring the ways designers and AI interact towards
co-creation, identifying four human-AI relationships (friend, collaborator, student,
and manager), as well as the different ways they impact on the designer-user
experience. Our study advocates for the importance of designer modeling through
ML as the generation of surrogate models of designer styles by training on existing
designer-generated data, aiming for an improvement in quality and diversity in
computational creativity and, in particular, MI-CC tools.

The Designer Preference Model in EDD
EDD is an MI-CC tool where designers can create dungeons and rooms; meanwhile,
a PCG system analyzes their design and proposes suggestions to the designer [9,
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Figure 1: The stages of the design style clustering development: (1) Data was first collected
through two user studies. (2) Then, using the design sequences, the data was processed into five
different datasets, one using the room images, a second using the tiles information, and three using
tabular information. (3) A data reduction technique was applied to different datasets, and then
they were clustered and internally evaluated. (4) The clusters were formed, picked from the best
performing methods, and labeled based on the data points within each cluster. The clusters were
evaluated by visualizing how a typical design session traverse the various clusters, and K-Means
(K=12) was chosen as the final approach. (5) Finally, using this final approach all the sequences
were clustered and archetypical paths were identified.

35]. EDD uses Interactive Constrained MAP-Elites (IC MAP-Elites) [8], an
evolutionary algorithm that combines Constrained MAP-Elites [36] with interactive
and continuous evolution.

The work presented in [37] introduced the Designer Preference Model, a data-
driven solution that learns from user-generated data based on their choices while
using EDD. Both systems constantly interact and depend on each other, so that
the Designer Preference Model learns from the selected suggestions, and IC
MAP-Elites uses the Designer Preference Model as a designer’s surrogate model
to complement the fitness evaluation of new individuals. The results showed the
need for stability and robustness in the data-driven model, to counterbalance the
highly dynamic designer’s creative process.

Concepts and Definitions

Our work draws from ideas, concepts, and definitions introduced by Liapis et al.,
such as the core designer model loop when using CAD tools, what can be modeled:
preferences, style, goals, processes, and their definition, and particularly, the use
of designer modeling as an individual or collective model [27]. We support our
approach on the idea of style as a particular type of designer’s preference, and that
a collective model can be used to form a stable and static design space, which after
being interacted with by designers, can be adapted towards them.
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Design Style
There exist many different styles when creating content, especially levels, that
designers can create and adapt to accomplish their goals and the experiences
they want for players. On a general level, Design Style encompasses the creative
process from conceptualization, prototyping, reflection, adaptation, especially when
following different processes or constraints during collaboration. Taking a more
concrete and operational level, Design Style can be analyzed as overarching goals
that different designers have when creating a dungeon. For instance, dungeons in
games such as Zelda [5] or The Binding of Isaac [38], represent a particular playing
style planned by the designer. In the former, low tempo, exploring the dungeon,
and secret rooms define the style of the dungeons, whereas in the latter, high tempo,
optimizing time and resources, small rooms, and in general high-challenge define
the dungeons.

While interesting and relevant to understanding the designers’ holistic design
process and the expected player experience, Design Style can also be discussed
on an individual room basis. Rooms have their own set of characteristics and
styles that can be identified and modeled to understand their design process. Some
would prefer to create the room’s architecture first to then create the goals within,
whereas others would like to place strategic objectives around and then create the
architecture around it or alternating between both. Even with such a division, how
to reach those design styles is not straightforward and does not require the same
strategy, which also shows the preference and style of individual designers. For
instance, if the goal is to create a challenge to reach a door, the designer could create
a room with a substantial number of enemies, create a concentrated high-challenge
in the center of the room, or divide the room into smaller choke areas. Therefore,
in this paper, we take a simplified view of Design Style and treat it as the style
designers follow to create a room, informed by the individual steps each has taken
connected to their preferences and goals.

Room Style Clustering

This paper presents an approach and method for the implementation of designer
personas: an analysis of designer style clustering to isolate archetypical paths that
can later be used to build ML surrogate models of archetypal designers. Such
models would allow for an stable and static design and solution space to be traversed
by designers, adapting it to them as they explore their creative process.

The proposed system builds on top of EDD’s Designer Preference Model and
preliminary results [37], expanding it to classify the designers’ designs based
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Figure 2: Best resulting cluster set. K-Means (K=12), using the Tiles Dataset. While it scores
slightly less in the internal indices that other setups, a qualitative analysis successfully gives us
more granularity by subdividing the main bottom clusters, to label and cluster the design process
of designers. Sample rooms belonging to each cluster are displayed on the right, next to the total
number of rooms in the cluster.

on clusters developed using previously hand-made design sequences by expert
and non-expert designers. Figure 1 illustrates our approach in five sequential
stages, from data collection to experimentation and results. The first four stages are
explained in the following subsections, whereas Section Designer Personas shows
the experimental results.

Data Collection
We conducted two user studies where participants were tasked with designing
and creating a dungeon with interconnected rooms without restrictions, using all

Table 1: Best performing setups based on their internal validation and visualization of clustered
data points.

Algorithm Data K ♢ □ △ 𝐴𝑅𝐼 𝐴𝑅𝐼 (𝑅)

K-Means Tiles-PCA 9 0.43 0.73 9437.23 0.941 0.581
★K-Means Tiles-PCA 12 0.41 0.77 9436.57 0.935 0.775
K-Means Dimensions-PCA 12 0.43 0.73 7738 0.84 0.876
K-Means Combined-PCA 10 0.41 0.73 8455.34 0.931 0.866

Agglomerative compl. Tiles-PCA 6 0.501 0.64 4221.34 0.719 0.419

♢ Silhouette Score □ Davies Bouldin Index △ Calinski-Harabasz Index
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Figure 3: Example of a room’s design step sequence and its clustering. At the top, we present the
design steps of one of the rooms in the dataset starting at the top left with the first design step. At
the bottom, it is the actual trajectory of the design in the cluster space. Numbered and in black
(every 3 steps), it is shown how each step of the design process is clustered by our approach

the available tiles i.e. floor, wall, treasure, enemy, and boss tiles. All participants
were introduced to the tool before the design exercise. User-generated data was
gathered during the complete design session, creating a new data entry every time
the designer edited the dungeon. In total, we had 40 participants, 25 of these (i.e.
NYU participants) were industry or academic researchers within the Games and
AI field, and the other 15 (i.e. MAU participants) were game design students. This
resulted in a diverse dataset composed of 180 unique rooms like the ones depicted
in Figure 1, that was pre-processed and clustered in the subsequent stages.
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Dataset pre-processing
From the 180 unique rooms, we extracted and used each room’s design step
sequence, from their initial design to the more elaborated end-design, to compose a
richer dataset that could capture the design process of a designer rather than focusing
on the end-point. This resulted in a dataset with 8196 data points. Moreover, five
different copies of the dataset were created to analyze and compare the performance
of the clustering stage using the following image pre-processing methods:

1. Room: No pre-processing. Room images are fed into the next stage as they were
created by the designer, with a resolution of 1300 × 700 × 3, corresponding to
width, height, and RGB (3 color channels).

2. Tiles: Each room tile type is mapped to a single-color pixel and the rooms are
simplified to a pixel-tile based representation, as shown in the second stage of
Figure 1. The dimensions are downscaled to 13 × 7 × 3.

3. Dimensions: Each room is described by its five IC MAP-Elites feature dimension
values, excluding the similarity scores: Linearity, Leniency, #MesoPatterns,
#SpatialPatterns, and Symmetry. A complete description of these features
can be found in [39].

4. Inner Content: Each room is described by 12 values, related to the count,
sparsity, and density of the enemy, treasure, floor, and wall tiles contained in it.

5. Combined: A combination of the Dimensions and Inner Content methods.

Clustering and Analysis
We used the Scikit-learn machine learning toolset [40] to run all setups, data
reduction and clustering algorithms, and to internally evaluate the clusters. To
obtain the best set of clusters, we ran different setups with the above datasets. The
data was reduced to two meaningful dimensions with two different data reduction
algorithms, Principal Component Analysis (PCA) and T-Distributed Stochastic
Neighbor Embedding (T-SNE). For both dimension reduction algorithms, we fit
the algorithms with each individual dataset, setting to two principal components
and in the case of T-SNE using PCA as an initializing algorithm, and transforming
the data into a pca_dataset and tsne_dataset. Each two-dimensional point in the
new datasets represents a step in the sequences described above. Preliminary tests
without dimensionality reduction using the same distance metrics were conducted
for all datasets except for Room and Tiles since the amount of dimensions made it
computationally infeasible. These did not result in good space partition, achieved
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worse internal indices, and produced disjointed clusters. For detailed information,
see the supplementary material.

All the resulting datasets were then clustered using K-Means, K-Medoids, Ag-
glomerative clustering, and DBSCAN. K-Means was initialized using the
standard k-means++ implementation in scikit-learn, which initializes all centroids
distant from each other. K-Medoids was initialized similarly, using the standard
k-medoids++, and tested using the cosine, euclidean, and manhattan distances.
Agglomerative clustering is a hierarchical clustering approach using a bottom-up
approach implemented in scikit-learn using four different linkage criteria for
comparing data points: Ward, Complete, Average, and Single. Finally, DBSCAN
clusters points based on density separated by low-density areas; thus, DBSCAN
automatically finds 𝑘 based on two parameters, 𝜖 describing the maximum distance
between points and min_samples describing the minimum amount of samples
within a group to be considered a cluster. K-Means, K-Medoids, and Agglomerative
clustering were tested using multiple 𝐾 values ranging from 3 to 13, and DBSCAN
was tested with several 𝜖 values ranging from 0.3 to 1.0, and min_samples ranging
from 2 to 9.

Since we lack a labeled dataset (i.e. ground truth) for cluster validation, we evaluated
the results from all setups using the internal indices below. However, good values
in internal indices are indicative and do not imply the best information retrieval,
which is why we also manually inspect the clusters and the rooms grouped together.

• Silhouette Score (♢): The Silhouette Score shows how similar a data point is
to the cluster it is associated with, through calculating the difference between
the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 from the point to the points in the nearest cluster and the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
to the points in the actual cluster. The value is bounded from -1 to +1, with
values closer to +1 indicating a good separation of the clusters, and closer to -1
meaning that some points might belong to another cluster.

• Davies-Bouldin Index (□): The DB-index is the ratio between the within-cluster
distances and between-clusters distances. With this, we can have an insight into
the average similarity of clusters with their closest cluster. The value is bounded
from 0 to +1, where values closer to 0 relate to clusters that are farther apart
from each other and less dispersed, thus, this index is more crucial when we
have more dense representations.

• Calinski-Harabasz Index (△): The CH-index is another index related to the
density of the clusters and how well separated they are. The score is the ratio
between the within-cluster dispersion (compactness) and the between-cluster
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dispersion (separation). The CH-index is positively unbounded, and the higher
the score the better.

• Adjusted Rand Index (𝐴𝑅𝐼): 𝐴𝑅𝐼 computes the similarity between two set of
clusters. We tested our setups by using 70% of the data as training set to fit the
cluster algorithm and the other 30% to analyze how the fitted clusters clustered
unseen data. Then, using our setups fitted with the full dataset, we compared
these 30% test set using 𝐴𝑅𝐼, giving us an estimated performance value with
unseen data. Additionally, we computed 𝐴𝑅𝐼 (𝑅) by splitting the data based on
the room sequences rather than on the individual design steps to remove any
relation between training and test set.

Cluster Labelling
Table 1 shows the best performing setups according to their internal indices scores
and manual qualitative analysis of the clusters, rooms clustered together, and
sequence analysis (further explained in section Designer Personas). The algorithm
selection process followed a systematic analysis of each algorithm with each dataset
from the lowest to the highest hyper-parameter value for each algorithm. We focused
on the setups that both scored the best in the different indices (as a combination)
and using the elbow method, which is a common heuristic in clustering to select
the best 𝑘 . We filtered our results by 𝑘 ≥ 6 as it gave more meaningful partitions
and better groups overall. Some setups with lower 𝑘 values gave good overall
internal indices scores but logically, tended to make big clusters and supersets.
For instance, K-Means (k=3) using Tiles dataset scores ♢ = 0.55, □ = 0.66, and
△ = 9049.65. However, the three clusters acted as supersets, dividing the space into
an upper "over-population" cluster, and into two smaller bottom partitions, one to
the left accounting for the architecture of the rooms and one to the right focused on
challenge and leniency. By using 𝑘 ≥ 6, we guarantee that at least the big clusters
would be divided into meaningful subsets such as the ones shown in figure 2.

When using the Dimensions and Combined datasets, the clusters perform well in
certain indices than when using the Tiles dataset with certain algorithms. However,
when analyzing the resulting setups, they missed a clear relationship between
the clustered rooms, which was exacerbated when analyzing sequences on these
setups, where they missed continuity between clusters and either jump around
clusters or had close to no movement between them. When using these datasets
and analyzing the sequences, we notice that there are sequences where the cluster
set is robust to seemingly meaningless changes, whereas jumps occurred when
something important changed (or was added), and in other sequences, the clusters
are very sensitive to changes. We believe this is because similar rooms (one or a
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few steps in difference) could have a big impact on several dimensions within these
datasets, such as a room becoming more symmetric and fully linear by simply
adding a few walls. This, combined with the lack of natural continuity in many of
the analyzed examples, negatively affected their evaluation.

Conversely, given that we are creating tile-based rooms and dungeons, the Tiles
dataset had more representative features, which when used, generally performed
better in the evaluated internal indices, and the clusters meaningfully separated the
data. Similar robustness and beneficial behavior as when using the Dimensions and
Combined datasets was also encountered while showing a clear continuity between
designs that supports its usability (further discussed in section Designer Personas).
Figure 2 shows the best-resulting cluster set found among all the experiments run.
K-Means (K=12) with the Tiles dataset was chosen as the best cluster set. While
K-Means (K=9) performs better in all indices, K=12 gave us more granularity
within the bottom clusters. In our case, this was more important, especially since
the difference was minimal, as the bottom area of the design space is denser than
others containing much of the early design steps and their refinement.

In the figure, we have plotted on top of the clusters the labels describing in general,
the content that is within them. Labels were defined based on the rooms that were
clustered together and surrounding clusters’ content. The following is a description
of the clusters and rooms clustered together:

0. Empty-Initial rooms: This cluster relates mostly to the initial designs made
by the designers. These designs are from completely empty rooms to initial
work-in-progress structures.

1. Main architectural shapes: Similar to other clusters within the same layer, this
cluster relates to the development and definition of main architectural patterns that
are somewhat symmetric.

2. Architectural complexification: This cluster relates mostly to the complexifica-
tion of wall structures by having dense wall chunks, representative architectural
patterns, or symmetrical patterns.

3. Bordered rooms with deeper architectural development: This cluster relates
mostly to rooms with an added wall border by the designer, and where the focus is
to shape chambers and develop more visual structures.

4. Thick-walled small chambers: This cluster to the far right region in fig. 2,
relates to more highly-linear, confined and maze-like rooms.

5. High challenge, clear goal: This cluster relates to well-shaped rooms with clear
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wall structures and goals, towards more challenge.

6. Chamber separation with forced enemy encounter: This cluster relates to
rooms that are in the process of a clear segmentation into corridors and chambers,
and that enforce to some extent enemy encounters for the player.

7. Balancing and optimizing: This cluster contains a mix between corridors and
chambers within rooms with a focus on balancing rooms and optimizing their
design towards certain goals.

8. Separating and populating chambers: This cluster relates to the process of
separating rooms into distinct chambers, focusing on the center of the room, and
starting to populate rooms with enemies and treasures.

9. Dense, less organized: This cluster contains rooms that still have a certain
objective but are moving towards more disorganized distributions of micro-patterns
in relation to their density.

10. Dense, full range leniency: Focusing on density as the other two clusters
within the same layer, this cluster relates to rooms that are in the full range of
leniency from very rewarding treasure rooms to very challenging boss rooms.

11. Dense, disorganized micro-patterns: This cluster contains the extreme rooms
that contain a high density of tiles, other than floor-tiles, without a clear structure
or objective for the player.

Moreover, besides the local relation between clusters, the clusters are implicitly
divided in three layers on the Y-axis. From bottom to top, (a) architectural patterns
complexity, relating to clusters composed of rooms with clearer or complex
shapes created with walls, from empty rooms to chambers. (b) Goal creation,
enemy/treasure balance, with clusters containing the strategic addition of enemies
and treasures to establish objectives in the room for the player. In terms of EDD,
these rooms are composed of more meso patterns. And (c), over-population, which
relates to clusters filled with less organized and dense rooms where the addition
of enemy or treasure does not necessarily need to follow any clear objective.
Identifying the designer in a layer, and the path they have taken to get there could
show meaningful information in the design process. For instance, the intentions
of the designer or in what phase of the design process they are at the moment;
i.e. trying the tool or observing how the tool reacts or scraping their current goal
towards a new goal within the room.
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Figure 4: Final and common designer trajectories. The archetypical paths are represented with
thick arrows, and were calculated using the frequencies of subsequences from 180 diverse rooms.
Each color represent a unique trajectory; with green the Architectural-focus, with red the
Goal-oriented, with black the Split central-focus, and with blue the Complex-balance.
Finally, thinner purple arrows extending from clusters traversed by the archetypical paths show the
multiple possible branches that an archetypical path can deviate or extend to.

Designer Personas

Once we created, evaluated, and labeled the room style clusters, we were able
to cluster and visualize the paths of a typical design session. Figure 3 presents
an example of the design sessions, where we cluster each step of the design.
This sequential process revealed that there is an interesting continuity between
room style clusters, even capturing when a designer applied one of the procedural
suggestions due to bigger steps in the room style clusters. Further, through this
process, we could understand the progress of designers in their design process and
represent their design style and trajectory in relation to the traversed room style
clusters rather than individual editions.
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(a) Architectural-focus (b) Goal-oriented

(c) Split central-focus (d) Complex-balance

Figure 5: Example archetypical paths from different frequent sequences used to create the clusters.
To the left of each subfigure, we present each key step in the trajectory i.e. when the design entered
a new room style cluster. (a) presents the Architectural-focus where the focus is firstly on
creating the structural design of the rooms; the design process jumps back and forth suddenly to
room style cluster 5 (one of the possible branches) due to the designer adding a boss, and removing
it immediately. (b) presents the Goal-oriented where the design focus on a minimal architecture
complexity and mix between adding structural changes and enemies/treasures. (c) shows the Split
central-focus where, intentionally, the designer creates a center obstacle with a boss and build
around it. Finally, (d) presents the Complex-balance; the designer focuses on building complex,
uncommon structures first and then add some goal with enemies and treasures, taking advantage
of the spaces.

Unique Trajectories
Using the room style clusters in Figure 2, we clustered the design session of all
the 180 designs. This resulted in trajectories where each individual design step
was associated to some room style cluster. For instance, the design session in
fig. 3 resulted the trajectory:𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ={0>0>0>0>0>0>0>1>1>1>1>1>1>2>2
>2>2>2>2>2>2>2>2>2>2>2>2>2>2>6>6>6}. We then converted these trajec-
tories to their unique trajectory, which would convert the previous 𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦
into 𝑈𝑛𝑖𝑞𝑢𝑒 ={0>1>2>6}, where the first and last element of the sequence are
respectively, the starting- and end-points, with all the unique intermediate steps in
between.

These unique trajectories varied in the starting point, length, and end-point, however,
when analyzing the trajectories we identified common patterns among them. To
gather the common patterns from the trajectories, we applied the Generalized
Sequential Pattern (GSP) algorithm, which locates frequent subsequences in the
analyzed trajectories. For instance, given three trajectories (a) {8>1>2>6>9}, (b)
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{8>1>2>6>10}, and (c) {0>1>2>6}, none of these is a perfect match in its entirety,
but GSP can spot that subsequences {1>2>6}, {1>2}, {2>6}, among others, appear
with frequency = 3.

After doing a preliminary analysis, we identified some steps that we classified as
“border designs”: steps that are borderline between two room style clusters. These
border designs disrupted the sequence pattern mining with noise in the unique
trajectories, specifically when these border designs entered a different room style
cluster for just a few steps. Therefore, we filtered them out by applying a threshold
𝜃 = 3, so that all subsequences inside one room style cluster with less than 𝜃
steps are removed from the main sequence. For instance, the sample trajectory
{0>0>0>0>8>8>8>7>8} turns into {0>8} instead of {0>8>7>8}. Through this,
we were able to reduce the noise and the search space, obtaining meaningful and
frequent patterns.

Archetypical Paths through Style Space
In Figure 4, we present the archetypical paths, represented as thicker arrows to
denote direction, which show the most frequent paths taken by designers either
through their whole design process or as the initial meaningful steps. From all
the collected unique trajectories, we have identified 4 main archetypical paths,
labelled, Architectural-focus, Goal-oriented, Split central-focus, and
Complex-balance. In addition, we have numbered each archetypical path for
easier visualization and referencing. In the figure, we also include thinner purple
arrows pointing to different room style clusters from several of the room style
clusters that are part of the main paths. These are possible branches presented in
the unique trajectories and added based on their frequency. Through these possible
branches, the design of an archetypical session, can vary and extended or deviate
the final design. Each archetypical path is defined and explained as follows:

Architectural-focus

The path followed by this archetype focuses first on designing the architecture of the
room with walls. Through this, the design focuses on shaping the visual patterns,
chambers, and corridors to give a clear space for adding goals and objectives with
enemies and treasures. The sequence is denoted with a green arrow in Figure 4,
and following the sequence {0>1>2>3}.

Goal-oriented

Design processes following this archetypical path, create the rooms in a more
standard way, combining simpler symmetric wall structures with distributed

294



(a) Design Goal: Low Leniency (b) Design Goal: High Meso-
Patterns

(c) Design Goal: Low Linearity

Figure 6: Example sequences created with specific design goals orthogonal to the designer
personas. (a) and (b) are categorized as Split Central-Focus and Goal-Oriented, respectively.
While (c) is uncategorized (with two possible designer personas).

placement of enemies and treasures. Thus, rather than focusing extensively on an
individual part of the room, the rooms have an initial structure and then they are
populated with some specific goal. The sequence is denoted with a red arrow in
Figure 4, and following the sequence {0>1>7}.

Split central-focus

This archetypical path focuses on designing rooms with obstacles placed in the
center of the room in the shape of enemies, treasures, or wall structures that clearly
split the room into different areas. The design process is less organized than the
other archetypes since it searches to achieve the split goal with any of the available
tiles. The sequence is denoted with a black arrow in Figure 4, and following the
sequence {0>8>7}.

Complex-balance

This archetypical path focuses on building complex symmetric shapes with a clear
objective for the player and adapting the spaces with a balance of enemies and
treasures. In general, the rooms created following this path are more unique and
typically balanced. The sequence is denoted with a blue arrow in Figure 4, and
following the sequence {1>2>7}.

Furthermore, using these archetypical paths, we can then categorize certain room
style clusters as key clusters based on their contribution to the paths, their frequency,
and their usage. Most of the paths go through or end in cluster 7 (“Balancing and
optimizing”) and cluster 1 (“Main architectural patterns”), which relate to rooms
that have a more explicit mix between corridors and small chambers, and more
clear architecture. The rooms in those clusters are or shaped as end rooms, as in
the case of cluster 7, or architecturally shaped to be “optimized” to a specific goal
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e.g. a dense bordered room. Similarly, most of the sequences start from cluster 0
("Initial room shapes"), with 134 out of the 180 designs, which correlates to the
type of designs encountered in that clusters. Thus, it is understandable that most of
the archetypical paths pass through these three clusters.

Nevertheless, it is the steps in-between that creates a clear differentiation between
the archetypical paths, which is the benefit of observing the design process as a
whole in the clustered room style space. For instance, in fig. 4, it can be observed
that Split central-focus starts in the same room style cluster as three other
paths, and tentatively ends in the same room style cluster as three other. However,
the designs following Split central-focus are more different from the other
trajectories, since it enters a room style cluster that is denser with several tile types
in principle, and where designers seem to have a clearer goal.

Moreover, in figure 5, we present examples of each of the designer personas by
visualizing the sequence of steps done in representative design sessions, showing
what these paths would look like in practice. Each visualization of a designer
persona has the key design steps to the left, where each image is in a sequence:
the first is the first edition of the designer, the last is the final edition, and the
in-between represent entering a new room style cluster.

Figure 5a shows the Architectural-focus, where the designer first created
the border of the room with a clear chamber division. As the designer adds and
subsequently removes the boss, the design jumps to cluster 10, which is one of the
possible branches, adding a high challenge.

Figure 5b shows the Goal-Oriented, where the designer sketched the main shape
of the room followed by alternating between enemies, treasures, and walls to
adjust the room towards the goal for the player. In this example, the designer
ends the design close to cluster 9, with a disorganized placement of tiles and a
less aesthetical room, but forming small choke areas balancing the placement of
enemies and treasures.

Figure 5c shows the Split Central-focus, where the designer directly started by
adding a boss in the center of the room and using this as a reference point, shaped
the rest of the room. Figure 5d shows the Complex-balance, where the designer
focused on creating an uncommon structure and followed by adding enemies and
treasures symmetrically, with clear individual areas for the player to approach.

Finally, further analyzing figure 5, it can also be observed an interesting dual
tendency of the designers in the archetypical paths. This dual tendency is to either
focus on the aesthetic configuration of the room based on what is perceived in the
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editor exemplified the personas: Architectural-focus and Split central-focus,
and to focus on the player experience exemplified the personas: Goal-oriented
and Complex-balance. Nevertheless, both are not mutually exclusive, instead this
illustrates adequately the dualistic role the designer has when using the tool and
designing rooms. That of creating an aesthetically pleasing object as it is seen in
the editor, and that of creating an experience.

Preliminary Evaluation
We recorded three design sessions with specific design goals orthogonal to the
archetypical trajectories to preliminary evaluate our approach. These are shown in
figure 6 with the design goals: figure 6a) Low Leniency (i.e., challenging room),
figure 6b) high meso-pattern level (i.e., large quantity of guard, treasure, enemy,
and ambush rooms), and figure 6c) low linearity (i.e., several paths between doors).
Both figure 6a and figure 6b fitted two of the archetypical trajectories, Split
Central-Focus and Goal-Oriented. Figure 6c shows a design achieving its goal
but identified as an early design, aligned with two possible designer personas. This
last example shows the situations we expect to normally encounter during design
sessions, namely, uncertainty and adaptation. If the designer continued elaborating
the level’s architecture, they would align with the Architectural Focus else they
would probably align with the Goal-Oriented.

While these results requires a larger study that analyses and verifies the different
possibilities and properties of using Designer Personas, especially, in-the-wild;
this evaluation helps to understand and visualize how unseen design sessions map
and align to possible archetypical paths regardless of the designer’s design goal.

Discussion

Our work draws on many of Liapis et al.’s [27, 28] ideas, concepts, and goals
but differs on the tool and type of game being created and the methods to create
designer models. These differences strengthen the importance and usefulness of
designer modeling and highlight this designer-centric perspective’s holistic and
generic properties.

The archetypical paths presented in sec. Archetypical Paths through Style Space
relate to EDD and the options that exist within it. However, while important for
EDD’s development, this is used to demonstrate what can be done and as an
exemplification of the method to model designers. Our method focuses on designer
modeling through clustering the design space and the room style based on level
design step sequences, resulting in archetypical paths. We leverage a collective
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dataset to build a collective cluster model of a set of designers and utilize this
to mitigate, to some extent, problems regarding lack of individual designer data
and continuous model adaptation [37]. Our method allows us to better understand,
cluster, categorize and isolate designer behavior. A virtual model of the designer’s
style could allow to better drive the search process for procedurally generating
content that is valuable for designers and aligned with the designers’ intentions,
observed as well by Liapis et al. [27].

We expect that work on similar domains and tools working with level design could
discuss these archetypical paths in relation to what designers create. They can build
on and adapt the proposed method to model designers to their respective domains,
identifying valuable and applicable designer personas. Then, these could be used
to understand what designers create and to design adaptive systems and better
Human-AI collaborations and interactions. The resulting Designer Personas have
the potential to be used in many different scenarios. For instance, as objectives for
a search-based approach to enable a more style-sensitive system, to evaluate the
fitness of evolutionary generated content, or to train PCG agents via Reinforcement
Learning [7].

Conclusions

This paper presents a novel method and meaningful steps towards designer modeling
through an experiment on archetypical design trajectories analysis in an MI-CC
environment. Through this, we characterize several representative design styles
as designer personas. We have first run and compared several clustering setups to
find the best partitioning of the room style using the design step sequence of the
collected 180 unique rooms, ending in 8196 data points, and resulting in a set of
twelve cohesive and representative room style clusters. We have then mapped these
180 design sequences in terms of these clusters, applying frequent sequence mining
to find four frequent and unique designer styles, with related common sub-styles.
As a result, we have presented a roadmap of design styles over a map of data-driven
room style clusters.

Recognizing the designers’ current style and the path taken so far, which would
indicate a possible designer persona, would open the possibility for recognizing
their intentions, preferences, and goals. This traced roadmap of designer personas
could let a content generator anticipate a designer’s next moves without heavy
computational cost, just by identifying their current location on the map and
offering content suggestions that lie in the most promising clusters to be visited
next. Conversely, it would also identify designers who do not follow a certain path,
i.e., deviating from the pattern, trying to understand their objective through their
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design style. Finally, we aim at implementing our approach in a functional system
within EDD to assess and validate the benefits and usability of these adaptable
systems with human designers.
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PAPER X - TROPETWIST:
TROPE-BASED NARRATIVE STRUC-
TURE GENERATION
Alberto Alvarez and Jose Font

ABSTRACT

Games are complex, multi-faceted systems that share common elements and
underlying narratives, such as the conflict between a hero and a big bad enemy or
pursuing a goal that requires overcoming challenges. However, identifying and
describing these elements together is non-trivial as they might differ in certain
properties and how players might encounter the narratives. Likewise, generating
narratives also pose difficulties when encoding, interpreting, and evaluating them.
To address this, we present TropeTwist, a trope-based system that can describe
narrative structures in games in a more abstract and generic level, allowing the
definition of games’ narrative structures and their generation using interconnected
tropes, called narrative graphs. To demonstrate the system, we represent the narrative
structure of three different games. We use MAP-Elites to generate and evaluate
novel quality-diverse narrative graphs encoded as graph grammars, using these
three hand-made narrative structures as targets. Both hand-made and generated
narrative graphs are evaluated based on their coherence and interestingness, which
are improved through evolution.

PUBLISHED IN

Proceedings of the 18th Procedural Content Generation Workshop at the Founda-
tions of Digital Games (FDG), ACM, 2022.

307





TROPETWIST: TROPE-BASED NAR-
RATIVE STRUCTURE GENERATION

Introduction

There exists a plethora of games1, with diverse genres and each containing a
different set of gameplay mechanics, audio, level, graphic, and narrative facets.
The creation and combination of these facets make game development a hard task,
commonly involving a diverse group of developers [1]. Likewise, the generation of
these facets in conjunction has been categorized as one of the biggest and most
challenging tasks within computational creativity [2, 3]. However, games share
common elements and underlying narratives, but it is non-trivial how to identify
these, how to define and analyze these games structurally, or what type of common
underlying structures exist; pointed out as well by [4, 5].

Among the different facets, narrative stands out in games as it helps to create
meaning, make sense of situations, and make games [stories] recognizable [6–9].
Narrative structures can be used to describe how an experience or story is to be
developed as argued by Barthes [10], and to create an abstract representation based
on the narrative structure instead of a temporal and partially-ordered sequence of
events [11]. Common narrative structures used in many domains are Aristotle’s
drama structure, which subdivides a story into exposition, climax, and resolution or
Propp’s analysis on the morphology of russian folktale, which revealed a common
structure among them, denoted as Propp’s 31 “narremes” [12].

This paper presents TropeTwist, a preliminar system that uses Tropes [13, 14]
extracted from TvTropes [15,16] as patterns and fundamental units, which when
combined can compose structures further representing other composed tropes.
Common narrative structures can be identified and defined using TropeTwist.
TropeTwist can define generic aspects of a story, leading to the identification of
events, roles, and narrative elements, as well as a novel way to form narratives.

1For instance, currently there are more than 68k games in steam https://store.
steampowered.com/search/?category1=998.
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Figure 1: Proof-of-concept narrative structures of existing games (top row) created using
TropeTwist with the available nodes (table 1). Bottom row shows exemplar elites generated with
MAP-Elites using the respective top row narrative structure as root. Color matching squares, lines,
and triangles denote different meso-patterns in the structures. Squares and triangles are the start
and end of a meso-pattern, respectively.

As a proof-of-concept, we built, analyzed, and described structurally three game
examples shown in figure 1, top row.

We propose graph grammars as indirect encoding of narrative graphs and the
use of the Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [17] to
generate novel variations (shown in figure 1, bottom row) using the proof-of-concept
examples as roots. Simultaneously, we propose metrics to evaluate the resulting
narrative graphs’ coherence, cohesion, and interestingness. Our preliminary results
show that we can produce more interesting structures retaining coherence based on
our metrics.

Related Work

Propp [12] analyzed Russian folktales identifying their fundamental structure in 31
steps. His work contributed to the identification of core elements, the proposal of
actions and events as functions and narrative atoms, and roles that are recurrent
within the folktales. Propp emphasized that these 31 functions and their arrangement
were the structure and what gave meaning to the story discourse. Barthes [10]
proposed three intertwined and progressively integrated levels in narrative work:
functions, actions, and narration. His work is characterized by the proposal of
fundamental narrative units in the function level to better assess and identify
structures in a narrative. Furthermore, Baikadi and Cardona-Rivera [18] further
discuss these fundamental units as narremes encoding narrative state and how
they could be combined to narrative structures. Their work, similar to TropeTwist,
proposes a graph structure of interconnected narremes. However, they defined
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narrative axes like Barthes, where each connection between narremes means a
change along a narrative axis. In games, the narrative is usually directed by quests,
which Aarseth [19] discusses as a central element in games to make sense of other
elements, and which are defined by Yu et al. as a form of structure, dividing the
story into achievable rewards and partially ordered set of tasks [20].

Furthermore, the generation of narratives, stories, and quests using a variety of
techniques such as planning algorithms [21,22], grammars [23,24], or machine
learning [25, 26], is a growing and important field within games research and
narrative research in general [8,20,27,28]. One typical approach for the generation
of content and stories is the use of patterns representing different elements such as
level design patterns [9, 29], quest patterns and common quests in games [30, 31],
or identifying fundamental units and assembling them based on various pre-
conditions [32, 33]. A particular type of pattern is tropes, which are concepts that
are recurrently used in transmedia storytelling [14, 15]. Horswill [34] focused
on constructing an expressive language that could encode plot tropes as story
fragments, composing a database of fragments combined sequentially with a
planner. Similarly, Thompson et al. [13] used the idea of tropes as story bits
where a system would construct valid stories from users’ defined story bits with
pre-and post-conditions. TropeTwist uses the idea of tropes for nodes and patterns
in structures and encodes and represents these as a graph. Scheherazade is a
system that can capture narrative structures by encoding and annotating narrative
texts, which introduced the Story Intention Graph model, a formal and expressive
representation of narratives [35].

Moreover, we use graph grammars and grammar recipes to generate structures.
This approach is similar to how Dormans and Bakkes [36] generate missions and
space using a “key and lock” structural idea. Our approach uses MAP-Elites, a
quality-diversity algorithm that uses behavioral dimensions that are orthogonal
to the objective function to store diverse individuals in a grid [17]. Evolutionary
algorithms are a popular approach in PCG to generate diverse type of content [37],
but not as much for narrative content. MAP-Elites have been used to generate
content in different game facets such as levels [38, 39], mechanics [40], or enemy
behavior [41].

Assessing narratives is a complex and non-trivial task. The goal is to create a
narrative that is both syntactically correct (e.g., coherent and consistent) and
semantically rich (e.g., novel and interesting) [42–44]. Perez y Perez and Ortiz [45]
proposed a model to evaluate interestingness based on novelty and correct story
recount, with emphasis on the story’s opening, closure, and dramatic tensions.
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Table 1: Tropes included and used in TropeTwist, extracted from [15].

Name Symbol Definition
Hero HERO A protagonist character.
Five-man band 5MA Group composed by up-to-five

archetypical characters.
The chosen one NEO Specific hero chosen as the one.
Superhero SH Specific hero with unique abilities.
Conflict CONF Non-specific problem to overcome

between characters.
Enemy ENEMY A nemesis to the hero.
Empire EMP Collective enemy with the

ambition of conquering the world.
Big bad BAD Specific enemy, which is the

ultimate cause for all the bad.
Dragon DRAKE Specific enemy, which is the right

hand of BAD.
Plot device PLD A feature or element that drives

the plot forward.
Chekhov’s gun CHK PLD relevant to the story
MacGuffin MCG PLD with irrelevant nature to

drive the story.
May help in quest MHQ PLD important to resolve a conflict.

Szilas et al. [46] discuss interestingness as a paradox dramatic situation with
obstacles and conflicts, albeit applicable to stories as successive events. Yet, to
approach subjective measurements such as interestingness, most research turns
towards having human evaluation [47, 48] or using such to form human models to
be used as surrogate models [49, 50].

Building narrative structures with tropes

In storytelling, a trope [14] is a convention or figure of speech that the storyteller
assumes to be recognizable by the audience. TvTropes is an online wiki that
compiles and describes several thousand tropes in many sorts of media [15]. As
exemplified by [16], tropes could be interconnected in graph-like structures, called
story molecules, to succinctly depict the structure behind a narrative.
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TropeTwist
TropeTwist elaborates on the concept of story molecule to represent narratives
using graph-like structures of interconnected tropes, called narrative graphs (NG).
NGs encode narrative structures in an abstract level that show and define the game’s
narrative structure and certain abstract properties such as key items, roles, relations,
or main events. Table 1 shows all the included tropes to be used as nodes. Nodes
are depicted (fig 1) with shapes specific to their trope base type: heroes (rectangle),
conflicts (diamond), enemies (hexagon), and plot devices (circle). HERO is the
base pattern of 5MA, NEO, and SH. ENEMY is the base pattern of EMP, BAD,
and DRAKE. PLD is the base pattern of CHK, MCG, and MHQ.

Nodes in a narrative graph are necessarily interconnected by either unidirectional
or bidirectional edges (with one or both arrowheads) or by entailment edges (with
a single diamond head). Given nodes A and B, A ♦— B, reads as “A entails B,”
whereas A→ B denotes a relationship from A to B, and B→ A the opposite. A
↔ B denotes a reflexive relationship between A and B. As an example, HERO
→ CONFLICT→ EMP denotes a hero who is in conflict against an empire-type
enemy, whereas HERO ↔ CONFLICT denotes a hero who is in conflict with
themselves. EMP ♦— DRAKE ♦— NEO, denotes an empire that entails a dragon
enemy that, once beaten, will lead to the appearance of a chosen one hero, creating
some causal links. The system is ambiguous by design. We take advantage of the
ambiguity for 1) the generation of new structures (fewer constraints), 2) removing
the focus on details by designers to let them focus on the overarching picture, and
3) for other systems to define and interpret these abstract properties.

Furthermore, interconnecting tropes can give rise to other tropes and patterns,
described in the following section. The nodes and their respective trope and
pattern were chosen from a subset of tropes in generic categories such as heroes
or plot devices. These categories were inspired and chosen based on tropes from
TVTropes, the division by James Harris [16], and previous research such as Propp’s
morphology [12] or Greimas’ actantial model [51].

Trope Patterns
Tropes and interconnected tropes (i.e., subgraphs) give rise to different types of
patterns. These patterns can be micro-patterns, encapsulating a single trope node,
meso-patterns, often composed by more than one micro-pattern with special
meaning, and auxiliary patterns, denoting graph problems. We calculate the
relative tropes and patterns’ quality within an NG and use this to assess the general
quality of the graph. These qualities are proxies for certain characteristics among
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the defined patterns that are used to evaluate the graphs, but they do not capture any
story quality; especially, since we are only defining structures. When generating
narrative graphs from a root (explained in section Evolving Narratives with Graph
Grammars), the quality of a narrative graph becomes relative to the root, henceforth,
the “root graph” (RG). In the following descriptions, we will use EG referring
to the “evaluated graph” we are calculating the pattern’s quality (the generated
individual), and RG to refer to the relative and root graph. When using subscript
“pat,” we refer to the current pattern that is evaluated.

For most patterns, we calculate three general qualities (indicated when used) that
add to the quality of the pattern. 𝐺𝑞 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛) relates to the Generic quality of
patterns in EG, which calculates the general occurrence of a pattern within EG
compared to its occurrence in RG, calculated in eq. 1. 𝑅𝑞 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛) relates to
the Repetition quality of patterns, which calculates if a trope is unique in EG
(𝑅𝑞 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛) = 1) or its ratio among the same base pattern. Lastly, 𝐼𝑞 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
relates to the Involvement quality of patterns in EG, which calculates the amount
of associations a pattern has with structure patterns. Involvement means that
the pattern is either source or target in a structure and is calculated as the ratio
of structure pattern involvement by the structure pattern count in EG. These three
metrics incentivize graphs with similar amount and type of nodes than RG, minimal
repetitions, and more involvement.

𝐺𝑞 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛) = 1.0 − |𝑅𝐺 𝑝𝑎𝑡 − 𝐸𝐺 𝑝𝑎𝑡 |/max(𝑅𝐺 𝑝𝑎𝑡 , 𝐸𝐺 𝑝𝑎𝑡 ) (1)

Micro-Patterns

Micro-patterns are the fundamental unit in the system, which aims at categorizing
different sets of the individual patterns that are shown in table 1. Micro-patterns
are single nodes and the basic building block that, when interconnected, allows the
detection of meso-patterns.

Structure Pattern (SP) is any type of trope that would give some structural definition
to a narrative, whether this being a conflict, specific act, or a part in a dramatic arc
(e.g., climax). Currently, the only type of structure trope is the conflict (CONF)
trope, which represents the most basic structural interaction. The quality 𝑆𝑃𝑞 is
calculated as the equally weighted linear combination of:

𝑆𝑃𝑞 = 𝐺𝑞 (𝑆𝑃) + 𝐼𝑞 (𝑆𝑃) (2)

Character Pattern (CP): are identified as nodes within the narrative that could be
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either the player, possible ally or enemy NPCs, or simple enemies. In TropeTwist, it
is distinguished between heroes and villain patterns, and these are commonly used
as sources or targets (or both) of other patterns, and on a few special occasions
to denote a relation to another character. The quality 𝐶𝑃𝑞 is calculated per group
(heroes and villains), and it is the equally weighted linear combination of:

𝐶𝑃𝑞 = 𝐺𝑞 (𝐶𝑃) + 𝑅𝑞 (𝐶𝑃) + 𝐼𝑞 (𝐶𝑃) (3)

Plot Device Pattern (PDP) is described as the element within the narrative that
moves it forward, as a goal, object, or dramatic element to be used or encountered
by any of the characters. The quality 𝑃𝐷𝑃𝑞 is calculated as the equally weighted
linear combination of:

𝑃𝐷𝑃𝑞 = 𝐺𝑞 (𝑃𝐷𝑃) + 𝑅𝑞 (𝑃𝐷𝑃) (4)

Meso-Patterns

Meso-patterns are the features that emerge in the narrative from dynamically
combining micro-patterns and, on some occasions, these with other meso-patterns.
They are always composed of more than one pattern denoting some spatial, semantic,
or usability relationship within the narrative graph. We identified a subset of Tropes
(extracted from TVTropes [15]) that requires or works as the combination between
more fundamental units. For instance, the reveal pattern relates to the “Good all
along” or “evil all along.”

Conflict Pattern (ConfP) is a type of structure pattern composed by a conflict node
(Con), a source 𝑠 node, and a target 𝑡 node, which are both CPs and usually a hero
and a villain or the same character as 𝑠 and 𝑡. For instance, the subgraph HERO
→ CONFLICT→ EMP, indicates that a hero CP has a conflict with an enemy
CP. A conflict node can be used indefinitely to define several ConfP. A ConfP is
also either explicit or implicit. Explicit conflicts are explicitly encoded in the
graph and directed from 𝑠 to 𝑡 passing through the conflict trope. On the other hand,
Implicit conflicts relates to the conflicts from 𝑡 (or derivatives) to 𝑠 (or derivatives)
that are not encoded in the graph. For instance, the previous example is an explicit
conflict from HERO to EMP, and at the same, the EMP has an implicit conflict
with the HERO. The quality 𝐶𝑜𝑛 𝑓 𝑃𝑞 is calculated as the equally weighted linear
combination of:

𝐶𝑜𝑛 𝑓 𝑃𝑞 = 𝐺𝑞 (𝐶𝑜𝑛 𝑓 𝑃) + 𝑅𝑞 (𝐶𝑜𝑛 𝑓 𝑃) (5)
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Derivative Pattern (DerP) defines a relationship between tropes connected by
“entails” connections (♦—). Therefore, a DerP contains a list of patterns connected
by entails, named derivatives. DerP starts from a root micro-pattern and continue
until no more “entail” connections are encountered, effectively establishing a
hierarchy from the root derivative to the rest. By design, the patterns within a
DerP have a local and temporal order and a causal relationship. For instance, in
the subgraph EMP ♦— DRAKE ♦— NEO, engaging with the EMP, entails both
the conflict with DRAKE and the appearance of NEO. This means that only by
overcoming the DRAKE, NEO will appear - as a new hero or the evolution of
another. The quality 𝐷𝑒𝑟𝑃𝑞 is calculated (eq. 6) based on its 𝐺𝑞 (𝐷𝑒𝑟𝑃), the ratio
of derivatives within the DerP among the total amount of derivatives across all
DerPs in EG (𝑟𝑎𝑡𝑖𝑜𝜃𝑞), and the derivatives’ diversity.

𝐷𝑒𝑟𝑃𝑞 = 𝐺𝑞 (𝐷𝑒𝑟𝑃) + 𝑟𝑎𝑡𝑖𝑜𝜃𝑞 +
∑𝑙𝑒𝑛(𝐷𝑒𝑟𝑃𝑑𝑒𝑟 )

𝑖=0 𝐷𝑒𝑟𝑃𝑑𝑒𝑟𝑖𝑏𝑎𝑠𝑒𝑝𝑎𝑡

𝑙𝑒𝑛(𝐷𝑒𝑟𝑃𝑑𝑒𝑟 )
(6)

Reveal Pattern (RevP) connects two independent CPs as one, meaning that character
A was, in fact, always character B, and vice-versa. This pattern identifies confusion
and surprise within an EG, as, for instance, a villain could have been, in fact, “Good
All Along”2. In practice, a RevP is identified as a villain or hero connected with a
unidirectional connection (→) to another hero or villain. As a consequence, all
existing conflicts between them would become fake. 𝑅𝑒𝑣𝑃𝑞 is calculated based
on its 𝐺𝑞 (𝑅𝑒𝑣𝑃), the number of reveals in EG in relation to characters, and the
number of fake conflicts given the specific reveal.

𝑅𝑒𝑣𝑃𝑞 = 𝐺𝑞 (𝑅𝑒𝑣𝑃) +
𝑙𝑒𝑛(𝐸𝐺𝑅𝑒𝑣𝑃)
𝑙𝑒𝑛(𝐸𝐺𝐶𝑃)

+

(
1.0 −

∑𝑙𝑒𝑛(𝐸𝐺𝑐𝑜𝑛 𝑓 )
𝑖=0


1, if 𝑅𝑒𝑣𝑃 ∈ 𝑥𝑖
0, otherwise

𝑙𝑒𝑛(𝐸𝐺𝑐𝑜𝑛 𝑓 )

)
(7)

Active Plot Device Pattern (APD) operationalize and integrate PDPs within a
narrative since PDPs only describe an abstract goal or target. In practice, an APD
is identified as PDPs that have at least one incoming connection, and optionally,
one single outgoing connection. These limitations are added to limit the effect of a
PDP within a narrative. 𝐴𝑃𝐷𝑞 is measured based on its 𝐺𝑞 (𝐴𝑃𝐷), and the APD’s
usability, calculated based on the sum of incoming and outgoing connections

2https://tvtropes.org/pmwiki/pmwiki.php/Main/GoodAllAlong
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divided by half of the nodes in EG depicted as 𝑏𝑎𝑙𝛾𝑞 , penalizing APDs for not
using all their connections.

𝐴𝑃𝐷𝑞 = 𝐺𝑞 (𝐴𝑃𝐷) + 𝑏𝑎𝑙𝛾𝑞 (8)

Plot Points (PP) are key events within the EG, identified as discrete moments given
some pattern. The derivatives within a DerP, RevP’s source, and PDPs that are
APD are considered as plot points. 𝑃𝑃𝑞 is measured based on the number of PPs
within RG (𝐺𝑞 (𝑃𝑃)), and the number of PPs within EG in relation to the number
nodes within it (𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑞 (𝑃𝑃)).

𝑃𝑃𝑞 = 𝐺𝑞 (𝑃𝑃) + 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑞 (𝑃𝑃) (9)

Plot Twist (PT) takes advantage of plot points to identify those that could have
a bigger impact on the narrative. In practice, PTs consider the source of RevP,
derivatives from DerP that are a different micro-pattern than the root of the DerP
(except PDPs), and APDs that are connected to other APDs. For instance, in the
subgraph: EMP ♦— DRAKE ♦— NEO, given that NEO is a different micro-pattern
than root EMP (Hero and Villain, respectively), NEO will be identified as a Plot
Twist as it alters the “natural” order in the DerP. 𝑃𝑇𝑞 is based on the number of PTs
within RG (𝐺𝑞 (𝑃𝑇)), the PT’s involvement in EG, and the balance of PTs based
on the PPs in EG. Involvement varies depending on the associated pattern to PT.
When a PT is associated with a RevP, involvement is calculated as how much the
structure changes based on that (i.e., how many fake conflicts are created). When it
is related to DerP, involvement is calculated as how different the pattern is and
its order within the derivatives. Finally, when it is related to APD, involvement
is based on how usable the APD is within the narrative based on incoming and
outgoing connections.

𝑃𝑇𝑞 = 𝐺𝑞 (𝑃𝑇) + 𝐼𝑞 (𝑃𝑇𝑎𝑠𝑠𝑜𝑐𝑝𝑎𝑡 ) +
𝑙𝑒𝑛(𝐸𝐺 𝑝𝑡 )
𝑙𝑒𝑛(𝐸𝐺 𝑝𝑝)

(10)

Auxiliary Patterns

Auxiliary patterns denote problems in the graph and sub-optimal or impractical
nodes and connections within a graph. They are classified into Nothing, which are
nodes that are not identified as part of a meso-pattern; and Broken Link, which are
outgoing connections from a node that are not used or do not lead to any pattern.
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Proof-of-Concept
TropeTwist can be used to represent different narrative structures and parts of games.
To test and show TropeTwist’s expressiveness, we chose to form three different
narrative graphs representing different games shown in figure 1, top row: Zelda:
Ocarina of Time (Zelda:OoT) [52], Zelda: A Link to the Past (Zelda:LttP) [53] -
eastern palace, and Super Mario Bros (SMB) [54]. They represent different games
from different genres (fig. 1.a and 1.b are adventure-dungeon games, and 1.c is a
platformer), and represent different game’s phases; in the case of fig. 1.a and 1.c,
both represent the main structure of the game, while 1.b, represents a specific area
and sequence of the game.

Figure 1.a represents a simplified overarching narrative structure from Zelda: OoT.
The ocarina of time, given by Zelda to Link, is defined as a McGuffin (MCG) that,
when collected by “young link,” allows him to go forward in time to “adult link,”
the chosen one (NEO). This, in turn, enables explicit conflicts between hero and
enemy characters, which represents the main loop of the game. The structure shows
two factions, a set of heroes and the BAD.

Figure 1.b represents the structure and plot points from the eastern palace in Zelda:
LttP. All palaces in A Link to the Past follow a very similar structure and sequence.
The HERO’s goal is to get the “Pendant of Courage” (MCG). However, the MCG
derives from ENEMY and BAD, so the HERO must overcome them to achieve
his goal. The structure shows a causal and linear narrative that could be used to
identify elements that need to appear before others, similar to the work by Dormans
and Bakkes [36].

Figure 1.c represents the overarching narrative structure of SMB. In SMB, the
objective of Mario (HERO) is to rescue Peach (HERO) from Bowser (BAD). To do
this, the player goes through a series of platform worlds that always end in a “Fake
Bowser” (DRAKE). The player must continue until encountering the “Real Bowser”
(BAD), which then would enable the player to get to their objective (MCG).

Evolving Narratives with Graph Grammars

We use the Constrained MAP-Elites [41], and adapt it to work with graph grammars,
evolve production rules, and adapt the evolution towards a target similar to [39].
Constrained MAP-Elites adds feasible-infeasible two populations to each cell,
effectively evolving sub-populations per cell. An individual’s phenotype is a
narrative graph, and its encoding genotype is the production rules of a graph
grammar. A graph grammar is a context-free grammar whose productions add,
remove, and modify nodes and edges of a graph. Our implementation uses the
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Figure 2: sample complete process from an individual’s genotype to the phenotype.

tropes listed in Table 1 as nodes, and the three available connection types as
edges (→,↔, ♦–). Graph grammars do not apply rules sequentially; instead, every
individual does a random sampling of the rules in their genotype to produce recipes
to generate graphs. Recipes describe the rules’ order and repetition, and their size is
limited by the amount of production rules as minimum and the minimum plus five
as maximum. Recipes do not have repetitions within them, i.e., if rule 1 is added
at step 2, subsequent addition would simply add to the number of times that rule
will be applied at step 2. Their size is limited by the number of production rules
as minimum and up to five more samples as maximum. Figure 2 shows a sample
complete process from an individual’s genotype (i.e., rules) to the phenotype (i.e.,
narrative graph).

Individuals move between the feasible and infeasible population depending on the
feasibility constraint. NGs are deemed infeasible if the nodes are not fully connected
or if there exists a conflict pattern with more than one self-conflict. Infeasible
individuals are evaluated based on how close they are to be fully connected and
not having any inadequate self-conflict. The fitness function assesses NGs that are
deemed feasible based on their coherence (equation 3), which we use to assess
how correct, coherent, and in general, syntactically correct the narrative graphs
are. Coherence aims at maximizing an equally weighted sum between cohesion
and consistency. Cohesion refers to the link between elements that hold together to
form some group. In our implementation, it focuses on minimizing the number of
auxiliary patterns by calculating the proportion of Nothing and Broken Link among
all patterns in NG. A consistent NG should be regular and free of contradictions.
Thus, we calculate consistency (eq. 2) as the collective quality of micro-patterns
since they are the building blocks, and conflicts’ goodness based on the number
of fake conflicts. Thus, we aim at maximizing the quality of micro-patterns and
minimizing contradictions created by meso-patterns.
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𝑓𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =

∑𝑙𝑒𝑛(𝑛𝑔𝑚𝑖𝑐𝑟𝑜)
𝑖=0 𝑖𝑞𝑢𝑎𝑙

𝑙𝑒𝑛(𝑛𝑔𝑚𝑖𝑐𝑟𝑜𝑝𝑎𝑡 )
−
𝑙𝑒𝑛(𝑛𝑔 𝑓 𝑎𝑘𝑒𝐶𝑜𝑛 𝑓 𝑃)
𝑙𝑒𝑛(𝑛𝑔𝑐𝑜𝑛 𝑓 𝑃)

(11)

𝑓𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑓𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 + (1.0 − 𝑓𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛) (12)

Furthermore, MAP-Elites uses behavioral dimensions in a grid shape to retain and
foster diversity throughout generations. We use the following two dimensions to
evaluate the diversity:

Step. Step (eq. 4) calculates the Levenshtein distance [55] between two narrative
graphs, taking into consideration the number and type of nodes and connections.
Step is normalized using step threshold 𝜃 = 11 determined through a process
of experimentation, which does not consider steps farther than 𝜃, avoiding the
generation of too dissimilar graphs.

𝐷𝑠𝑡𝑒𝑝 = min(𝑙𝑒𝑣𝐸𝐺,𝑅𝐺 ( |𝐸𝐺 |, |𝑅𝐺 |), 𝜃) (13)

Interestingness (int). We aim at measuring the semantic quality of a narrative
graph. A narrative graph can be syntactically correct and coherent yet lack a good
semantic quality and do not evoke interest for designers or players. Therefore, we
leverage plot point, plot twist, and active plot device patterns to measure the
interestingness of the NGs. The nature of interestingness creates pressure on the
fitness function since the incidence of the three meso-patterns could (if overused)
“degenerate” the narrative; thus, decreasing its coherence. 𝐷𝑖𝑛𝑡 is calculated as the
weighted sum (𝑤0 = 0.4, 𝑤1 = 0.2, 𝑤2 = 0.4) of the normalized cumulative quality
of APDs, PPs, and PTs within an NG (eq. 5).

𝐷𝑖𝑛𝑡 = 𝑤0 ×
𝐴𝑃𝐷𝑞

#𝐴𝑃𝐷
+ 𝑤1 ×

#𝑃𝑃𝑞

#𝑃𝑃
+ 𝑤2 ×

𝑃𝑇𝑞

#𝑃𝑇
(14)

Experiments
We conducted a series of experiments to evaluate and analyze how the system
could evolve NGs into quality-diverse and valid narrative structures. We evolved
the three manually constructed narrative graphs shown in figure 1, top row. They
were used as root graphs and axioms in the EA, and we used interestingness and
step as behavioral dimensions. We did 5 MAP-Elites runs per narrative graph, ran
each for 500 generations, and set the initial population to 1000 randomly created
individuals. The initial population is generated by randomly creating between
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Table 2: Comparative results between root graphs and generated elites (shown in fig. 1)

Graph Cohesion Consistency Coherence (fitness) Interestingness
RG (fig 1.a1) 1.0 0.66 0.825 0.61
Elite (fig 1.a2) 1.0 0.76 0.875 0.73
RG (fig 1.b1) 1.0 0.75 0.87 0.38
Elite (fig 1.b2) 1.0 0.91 0.95 0.55
RG (fig 1.c1) 1.0 0.77 0.88 0.4
Elite (fig 1.c2) 1.0 0.85 0.92 0.52

two and five production rules. Each feasible and infeasible population per cell
has 25 individuals. Each individual is limited to test 10 recipes regardless of the
chromosome size. Offspring were produced either by selecting either the left-side
or right-side of a random production rule and exchanging them or with a 50%
mutation chance. If an offspring was generated by mutation, there was a 10%
chance to add or remove a production rule and a 90% to modify in various ways
existing production rules.

We calculated the coverage: how much of the constrained search space is explored
(i.e., constrained by the behavioral dimensions); the avg. fitness and the avg.
interestingness. All experiments had little variation regarding these metrics, and got
in avg. 23.5% coverage (24.9%, 21.4%, and 24.2%, respectively), 0.79 fitness (0.76,
0.8, 0.8, respectively), and 0.37 interestingness (0.39, 0.37, 0.36, respectively).
These results exemplify both the hard task of generating narrative graphs and
exploring the possibility space, and the seemingly competing qualities of coherence
(i.e., fitness) and interestingness.

Furthermore, in figure 1, bottom row, it is shown three different example elite
narrative graphs, generated from their respective root graphs on the top row and
with each individual evaluation shown in table 2. The root graphs have a cohesion of
1.0 since none of them have unused nodes or connections and have similar mid-high
consistency values because of using generic nodes (e.g., HERO or ENEMY),
repeating them, and low involvement in structures by characters. In the case of fig
1.a1, the RevP from HERO to SH creates some fake conflicts, which affect the
consistency but also boost the interestingness value of the narrative graph. Both
fig 1.b1 and 1.c1, are evaluated similarly with low interestingness; c1 involves a
simplistic and linear structure, and b1, while in principle more complex, is also a
relatively linear structure with no PTs.

Furthermore, all the exemplar elites have better consistency, coherence, and
interestingness than the respective root graph. In figure 1.a2, the graph has been
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reduced towards a bottleneck, RevP (HERO→ SH) is removed, and MCG is added
as the objective for SH, which could point towards competition or cooperation to
enable NEO. Such a change gives more consistency to the graph while seemingly
reducing its interestingness, but this relation and the ♦– connection between
MCG and NEO increase its interestingness. In figure 1.b2, the narrative has more
interaction between Plot Devices, and the BAD has a more active role. Particularly,
the fact that now HERO → MCG ♦– BAD and MHQ ♦– CHK ♦– BAD could
enable and force the HERO towards two main objectives before overcoming the
boss, which is reflected in the higher Interestingness. Finally, in figure 1.c2, the
narrative did not change much (only four steps away), yet the graph is seemingly
better, and the narrative could be very different. The graph has broken the loop
which connected DRAKE ♦– BAD, and could could point towards a side objective.
Further, the connection between BAD and MCG has been reversed; thus, the HERO
does not need to face the BAD to get the MCG, rather reaching the MCG will have
as a consequence the emergence of the BAD. Finally, BAD is no longer connected
to EMP and DRAKE; thus, BAD could be its own enemy faction, in this case,
complexifying the narrative and creating more challenge.

Discussion and Limitations

The trope-graph representation in TropeTwist allows for a quick definition of
narrative structures. They are, by design, ambiguous, do not encode temporal
information besides causal chains, and are, to some extent, generic, which makes
structures relatively simple to develop but more complex to interpret. These design
decisions make the system encode less rich information than others, such as
Scheherazade [35], but allow the structure to be interpreted in multiple ways. For
instance, the generated graphs could equally describe different stories, and the
interpretation given in this paper is just one of many. Thus, the system effectively
shifts the complexity from the structure to the “interpreter.” While the generated
structures could already serve as inspiration for users, an interpreter could provide
alternative interpretations that could be guided by or learned from users, which is
part of our future work.

Furthermore, the metrics proposed and developed here were used to tune and
evaluate the graph outputs without humans in the loop. However, they do not stand
in or replace human judgment. The metrics are estimated heuristics mainly based
on the graph functionality and relation among patterns. Most of them are related
to a “root graph,” which is a preliminary step for making TropeTwist interactive
and have humans-in-the-loop. We aim to develop a mixed-initiative version of
TropeTwist, where metrics depend on the designer’s creation. This would, in turn,
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allow the designer to steer the MAP-Elites search, generating content adapted to
them [56], and for MAP-Elites to assist designers with ideation proposing varied
structures.

Conclusions and Future Work

In this paper, we have presented TropeTwist, a system that interconnects tropes
and trope patterns to describe narrative structures. We demonstrated through three
proof-of-concept structures the system’s expressiveness to describe games with
diverse genres and mechanics, and different game phases. Further, we illustrated
how we could generate novel structures from the three proof-of-concept structures
using MAP-Elites, improving them on our metrics.

Tropes could be seem as something to avoid when exploring creativity, mainly
due to the possibility of showing unoriginal views by definition. However, a set of
combined tropes, patterns, and structures could give rise to novel combinations
that express the wanted structure. Similarly, identifying, visualizing, and defining
the tropes and patterns and doing “twists” with them; thus, transforming something
typical into atypical is the goal with TropeTwist.

The narrative structures show essential aspects of how the story will develop and
lead, and important components such as events, conflicts, or roles. However, to
further operationalize these structures, it is necessary other systems that make use
of them, such as quest [24, 57] or plot [58] generators. Another interesting future
work would be to explore the multi-faceted nature of games [3] and combine this
type of system with generators that focus on other facets such as level design [29,59]
or game mechanics [40, 60].

Generating novel narrative structures resulted in interesting variations, but the
system could not exploit all the advantages of MAP-Elites. Our results point towards
difficulties exploring the space, possibly because coherence and interestingness are
to some extent competing objectives. Therefore, we aim at extending TropeTwist
towards a mixed-initiative co-creative system [61], and with that, evaluate with
human participants. Given that our metrics are dependant on the designed graph;
then, we could constantly adapt the content generation and have adaptive models,
for instance, of interestingness, based on the user’s creation similar to [29, 62].
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PAPER XI - STORY DESIGNER:
TOWARDS A MIXED-INITIATIVE TOOL
TO CREATE NARRATIVE STRUCTURES
Alberto Alvarez, Jose Font, and Julian Togelius

ABSTRACT

Narratives are a predominant part of games, and their design poses challenges
when identifying, encoding, interpreting, evaluating, and generating them. One
way to address this would be to approach narrative design in a more abstract layer,
such as narrative structures. This paper presents Story Designer, a mixed-initiative
co-creative narrative structure tool built on top of the Evolutionary Dungeon
Designer (EDD) that uses tropes, narrative conventions found across many media
types, to design these structures. Story Designer uses tropes as building blocks for
narrative designers to compose complete narrative structures by interconnecting
them in graph structures called narrative graphs. Our mixed-initiative approach
lets designers manually create their narrative graphs and feeds an underlying
evolutionary algorithm with those, creating quality-diverse suggestions using MAP-
Elites. Suggestions are visually represented for designers to compare and evaluate
and can then be incorporated into the design for further manual editions. At the
same time, we use the levels designed within EDD as constraints for the narrative
structure, intertwining both level design and narrative. We evaluate the impact of
these constraints and the system’s adaptability and expressiveness, resulting in a
potential tool to create narrative structures combining level design aspects with
narrative.
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STORY DESIGNER: TOWARDS
A MIXED-INITIATIVE TOOL TO CRE-
ATE NARRATIVE STRUCTURES

Introduction

Games are multifaceted content that intertwines gameplay, mechanics, audio, level,
graphics, and narrative facets [1]. Narrative has been linked as a key facet to
connect different components in games such as level design [2], and to create
meaningful interactions with depth and context [3,4]. Thus, narrative in games has
been a focus of study [5–7] and its generation has been approached in different
ways and with different techniques [8–12].

Patterns have been a common approach to narrative and other facets. The focus
then has been on extracting common narrative aspects to ease the identification,
encoding, and generation of narrative in different forms [13–18]. However, it
remains a challenge to define certain narrative aspects more aligned with the
structure and overarching goals of the game given what type of content is generated,
as well as using these to design and compare among games. One approach would be
to change the abstraction level at which the narrative is designed. Instead of focusing
on the details, quests, or plot, one could focus on the structure. Narrative structures
can be used to describe how a story is to be developed, as argued by Barthes [19],
and to create an abstract representation that reveals common structures among
them, such as Propp’s 31 “narremes" [20]. One approach to generate narrative
structures is TropeTwist [14], which uses tropes, narrative conventions found across
many media types [21, 22], as patterns to design these structures.

This paper presents Story Designer, a mixed-initiative co-creative (MI-CC) narrative
structure tool built on top of the Evolutionary Dungeon Designer (EDD) using the
TropeTwist system. Story Designer uses tropes as building blocks for designers to
compose complete narrative structures by interconnecting them in graph structures
called narrative graphs. Story Designer lets designers create narrative graphs and
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Figure 1: The Story Designer screen in the Evolutionary Dungeon Designer. In the center, there is
the main narrative graph being edited by the designer. to the right, the suggestion grid using the
Interactive Constrained MAP-Elites (IC MAP-Elites), the possible dimensions to be used, and two
inspected suggestions. At the bottom, Story Designer presents some extra information regarding
fitness, interestingness, and coherence, for the designer’s convenience.

assist them with a suggestion grid that uses the Interactive Constrained MAP-Elites
(IC MAP-Elites) [23]. By having an MI-CC system to design narrative structures,
designers could ideate and prototype their structures while the system adapts
and suggest novel narratives, making use of patterns, optimizing coherence, and
situating the narrative structures along dimensions of interest for designers. At the
same time, IC MAP-Elites can take advantage and use the designer’s structure as a
proxy to evaluate subjective characteristics such as interestingness, which has been
the subject of several studies [24–26].

As Story Designer is implemented in EDD and based on the link between level
design and narrative, we make use of the designed dungeon to create constraints
over the narrative generation, effectively intertwining both facets. We assess Story
Designer with four controlled and simulated experiments, three premade structures
of different games, and one step by step design that showcasze the possibilities
within the system. All experiments were tested with and without level design
constraints and using a pair of dimensions and all dimensions during the search.
Our results indicate that IC MAP-Elites have consistency and stability in generating
content and that delimiting the search space with additional level constraints, while
limiting the diversity and generation of complex structures, guides better the search.
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Related Work

There is by now a large body of research on procedurally generating various types
of game content [27]. While the literature on PCG in general is far too voluminous
to survey here, it should be noted that PCG methods of different kinds have been
developed for a wide variety of content, not just game levels. Narrative, quests,
and plots have been generated using different approaches such as planning [28],
grammars [13,29], machine learning [11], and patterns [14,15,18]. Further, several
approaches have been proposed to generate multiple facets of games, in particular
level geometry together with rules, music, lighting, sound etc [1, 10, 30–35]. More
relevantly to the current project, several papers have proposed ways of co-generating
narrative and levels [3, 29, 36, 37].

In tandem with research on automatically and autonomously generating game
content and narrative, there has been a considerable amount of work “mixed-
initiative” systems, which allow a human designer to co-create content with
algorithms. In the domain of level generation for games, a number of systems
have been developed that allow a human to receive suggestions, feedback, or
constraints from an AI systems. These include systems for co-creating platform
game levels [38], strategy maps [39], and certain aspects of narrative [40, 41].

The core algorithm employed in the current paper is MAP-Elites, a quality-diversity
algorithm that seeks to illuminate a space of possible problem solutions [42].
While essentially a type of evolutionary algorithms, MAP-Elites, like other quality-
diversity algorithms, do not seek to find a single best solution but rather a set of
solutions that vary along certain specified measures. The measures define a grid,
where each cell is the best solution that has been found within certain values of
the measures. These measures can be defined in many ways; for game levels, they
might include the density of a level, its difficulty for a particular type of agent, its
symmetry etc. MAP-Elites has been used in multiple recent AI-based game design
systems [43–47].

Story Designer

Story Designer is a new system integrated in EDD, which presents a visual interface
for mixed-initiative narrative structure generation. It makes extensive use of the
TropeTwist system as foundation to build narrative graphs and assess them by
identifying trope patterns. The user manually designs a story structure by adding
and interconnecting nodes in a graph, which seeds an evolutionary algorithm (EA)
that generates story structure suggestions that can be incorporated into the user’s
design. This continuous co-creative design process implements the Interactive
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Constrained MAP-Elites (IC MAP-Elites) approach presented in [44], providing
quality-diverse suggestions across several feature-dimensions.

Story Designer is interconnected with the level design facet in EDD. This means
that the narrative graphs that can be developed and that can be generated and
suggested are constrained by the content that exists in the levels. For instance, if
the designer adds two NPCs besides the Hero, then the system could at most, use
three character nodes to represent them, or if the designer adds a boss enemy and a
quest item, this would mean that the boss enemy could be represented as one of the
villain nodes (e.g., Enemy, Big Bad, or Dragon) and the quest item as a possible
Plot Device.

TropeTwist
TropeTwist [14] is a system that uses tropes [21, 22, 48, 49], narrative conventions
easily recognizable by the audience, as patterns that combine to compose narrative
structures. These structures define generic aspects of a story, leading to the
identification of events, roles, and other relevant narrative elements arranged
as nodes in an interconnected narrative graph. By having all this elements in a
graph, entire narratives are encoded using graph grammars, to then procedurally
generate novel narrative variations by means of a MAP-Elites algorithm that
considers several narrative evaluation metrics, such as interestingness, coherence,
and cohesion.

Nodes in a narrative graph represent tropes. Interconnected tropes create other
composite tropes and patterns, that can be identified as subgraphs of a complete
narrative graph. These patterns can be micro-patterns encapsulating a single trope
node, meso-patterns, often composed by more than one micro-pattern with a
specific meaning, and auxiliary patterns, identifying structural gaps in the graph.
For a detailed definition of all tropes and patterns, please refer to [14]. Here we
present a comprehensive summary:

• Micro-patterns are the fundamental narrative unit in the system, encapsulating
tropes in building blocks to create complex narrative structures. These are
classified into structure patterns (SP), that articulate the story elements (i.e.
Conflict), character patterns (CP) (i.e. heroes and villains), and plot device
patterns (PDP), that move the story forwards towards a particular goal (i.e. the
MacGuffin).

• Meso-patterns may emerge from the combination of micro-patterns and other
meso-patterns, denoting spatial, semantic, and usability relationship within the
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narrative graph.

1. The Conflict Pattern (ConfP) ties a conflict node to two other nodes repre-
senting both parties in a conflict (i.e. HERO→ CONFLICT→ EMP, a hero
is in conflict with the Empire).

2. The Derivative Pattern (DerP) defines relations of entailment between other
nodes, called derivatives. These derivatives acquire a local and temporal
order, and a causal relationship. I.e the former conflict connected to EMP
♦— DRA ♦— NEO, means that the hero engages the Empire, which entails
both a conflict with the Dragon (DRA) and the appearance of the Chosen One
(NEO).

3. The Reveal Pattern (RevP) connects two independent CPs as one, meaning
that character A was, in fact, always character B, and vice-versa. This pattern
turns all existing conflicts between them into fake conflicts.

4. The Active Plot Device Pattern (APD) triggers a PDP and integrates it in the
the narrative, since PDP are passively described and lack any start condition.

5. Plot Points (PP) are key discrete narrative events. The derivatives within
a DerP, the source of a reveal pattern, as well as active plot devices are
considered plot points.

6. A Plot Twist (PT) identifies those plot points that could change the natural
flow of the narrative. I.e. in EMP ♦— DRA ♦— NEO, NEO is identified
as a plot twist since its nature (heroic) is opposed to that of the first node
EMP (villainous), which alters the natural order of the connecting derivative
pattern.

• Auxiliary patterns spot and encapsulate those areas in the graph that don’t
contain meaningful narrative information. Nothing highlights nodes that are not
identified or part of any meso-pattern; whereas Broken Link marks outgoing
connections from any node that do not lead to any pattern.

Workflow
Story Designer is integrated in EDD as a separate view (Figure 1) that can be
accessed anytime from the dungeon editor. The use starts with a minimal sample
narrative graph HERO→ CONFLICT→ ENEMY in the manual edition pane
(center). This graph can be extended by adding nodes from the node context menu
that pops up with a right-click on an empty space. Node are arranged by type for
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the sake of clarity, and an option to automatically re-arrange the graph is shown at
the end of the menu. Right-clicking on an existing node border will pop up the
edge context menu, that allows the user to create a new connection or to delete the
selected node. Existing connections are deleted by left-clicking on them.

In a way similar to EDD’s room editor [44], as the user edits the narrative
graph manually, this graph is fed into the underlying evolutionary algorithm that
procedurally generates on the fly alternative narrative graphs in the suggestions
pane (right). The top-right corner shows the feature-dimension matrix, whose cells
are colored depending on the fitness of the fittest elite contained in it, ranging from
dark red (no elite yet), to dark green (optimal fitness). The elite in the selected cell
of the matrix is displayed in the bottom-right corner. Hovering the mouse above
a cell displays its elite’s graph above the selected one, which allows the user to
compare several graphs at a glance.

Evolving narrative structures with Graph Grammars
The underlying evolutionary algorithm in Story Designer is an adapted version
of IC MAP-Elites [23] to evolve grammars. In Story Designer, an individual’s
phenotype is a narrative graph, and its encoding genotype is a graph grammar. A
graph grammar is a context-free grammar whose productions add, remove, and
modify nodes and edges to a graph.

An individual’s genotype is the production rules of the grammar, which are
deterministic i.e., a production rule (or pattern) only matches one production.
Given that the graph grammar does not need to be applied sequentially until
terminal nodes are reached, every individual does a random sampling of the rules
in their genotype to produce recipes. Recipes simply describe the order of rules to
be applied (sequentially) and the amount of times they will be applied. Recipes
do not have repetitions within them i.e., if rule 1 is added at step 2, subsequent
addition would simply add to the amount of times that rule will be applied at
step 2. The internal parts of the EA works exactly as in TropeTwist, but now it
is extended to use all the capabilities of IC MAP-Elites, namely, the continuous
adaptive evolution aspect [14, 23].

Moreover, thanks to continuous evolution, the EA constantly incorporates the
most recent version of the user’s design to the population of individuals in the
corresponding cell of the feature-dimension matrix. The designer can switch
between dimensions at any given time, as well as changing their granularity. IC
MAP-Elites manages two different populations within each cell: a feasible and an
infeasible one. Individuals move across cells when their dimension values change,
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or between the feasible and infeasible population according to their fulfillment of
the feasibility constraint. Narrative graphs are deemed infeasible if they are not
fully connected (i.e., all nodes can be reached from an arbitrary starting point),
if there exist a conflict pattern within the graph with more than one self-conflict,
or if level design constraints are enabled, the narrative graph violates any level
design constraint. Infeasible individuals are evaluated (equation 1 in a weighted
sum (𝑤0 = 0.5, 𝑤1 = 0.25, 𝑤2 = 0.25) based on how close they are to being fully
connected and to remove inadequate self-conflicts, while trying to maximize the
graph’s cohesion.

𝑓 (𝑖𝑛 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒) = 𝑤0 × 𝑓 (𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛) + 𝑤1 ×
#!𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑉 (𝑁𝐺)

|𝑉 (𝑁𝐺) |

+ 𝑤2 ×
#!𝑣𝑎𝑙𝑖𝑑𝑁𝐺 (𝑠𝑒𝑙 𝑓𝑐𝑜𝑛 𝑓 )

|𝑉 (𝑁𝐺) | (1)

Generated narrative graphs that are deemed feasible, are evaluated on their
coherence (equation 3), which is used to assess how correct, coherent, and in general,
syntactically correct the narrative graphs are. Coherence aims at maximizing an
equally weighted sum between cohesion and consistency (eq. 2). Cohesion refers
to the link between elements that hold together to form some group, which in Story
Designer means the minimization of auxiliary patterns (Nothing and Broken Link)
within the narrative graph. Consistency means that the narrative graph should be
regular and free of contradictions, aiming at maximizing the quality of micro-
patterns and minimize contradictions created by meso-patterns (contradictions can
affect the consistency fitness up to 𝑤0 = 0.3). For a more detailed explanation of
how the EA works internally and the different fitness functions, we refer to the
TropeTwist paper [14].

𝑓𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =

∑𝑙𝑒𝑛(𝑛𝑔𝑚𝑖𝑐𝑟𝑜)
𝑖=0 𝑖𝑞𝑢𝑎𝑙

𝑙𝑒𝑛(𝑛𝑔𝑚𝑖𝑐𝑟𝑜𝑝𝑎𝑡 )
− 𝑤0 ×

𝑙𝑒𝑛(𝑛𝑔 𝑓 𝑎𝑘𝑒𝐶𝑜𝑛 𝑓 𝑃)
𝑙𝑒𝑛(𝑛𝑔𝑐𝑜𝑛 𝑓 𝑃)

(2)

𝑓 (𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒) = 𝑓 (𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦) + (1.0 − 𝑓 (𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛)) (3)

Behavior Dimensions for Graph Grammars
Dimensions in MAP-Elites are a key component for the search space to be delimited,
and are identified as those aspects of the individuals that can be calculated in
the behavioral space, and that are independent of the fitness calculation. In Story
Designer, the designer is able to pick two dimensions at a time to facilitate
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Figure 2: Narrative graphs used for the experiments, constructed and designed in Story Designer.
When experiment 4 is discussed, the narrative graph referred is Experiment 4.5 as that is the
design’s final step.

visualization, and all dimensions, when needed, are limited using a threshold 𝛿 = 5.
TropeTwist implemented Interestingness and Step as behavior dimensions when
using MAP-Elites to generate novel narrative graphs. Step is calculated as the
Levenshtein distance between two narrative graphs, taking into account the amount
of nodes and connections and their type (eq. 4). Interestingness make use of the
APDs, Plot Points, and Plot Twists that are present in a narrative graph to assess
an approximate semantic evaluation since those represent some type of variation
in the graph (eq. 5). Given Interestingness is a highly subjective measurement,
we rely on those patterns since they calculate their quality based on the current
narrative graph and the one being edited by the designer.

𝐷𝑠𝑡𝑒𝑝 =
𝑙𝑒𝑣𝑎,𝑏 ( |𝑎 |, |𝑏 |)

𝜃
(4)

𝐷𝑖𝑛𝑡 = 𝑤0 ×
𝐴𝑃𝐷𝑞

#𝐴𝑃𝐷
+ 𝑤1 ×

#𝑃𝑃𝑞

#𝑃𝑃
+ 𝑤2 ×

𝑃𝑇𝑞

#𝑃𝑇
𝑛𝑔 (5)

Furthermore, we have extended TropeTwist with five more dimensions relevant
to the narrative structure design process, to give more choice to designers and
experiment with other dimensions in the search space:

Diversity (div). Diversity measures the variety of [base] trope types within a
narrative structure. Currently, there exist four base trope types, Hero (h), Villain
(v), Structure (s), Plot Devices (pd). Diversity takes into account the tropes that
also extend these base tropes. Thus, 𝐷𝑑𝑖𝑣 collects all tropes within a graph, and
increase a counter for each of the base trope type (𝑁𝐺𝑏𝑎𝑠𝑒 = ℎ, 𝑣, 𝑠, 𝑝𝑑 ∈ 𝑁𝐺),
normalized by the max amount of base trope types depicted in Eq. 6:
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Table 1: Level constraints used per Experiment. Constraints were chosen based on the maximum
amount of elements needed to design the narrative structure in the system.

Constraining elements Exp. 1 Exp. 2 Exp. 3 Exp. 4
Heroes 2 2 4 2
Enemies 2 2 1 2
Quest Items 2 3 1 2

𝐷𝑑𝑖𝑣 =
𝑁𝐺𝑏𝑎𝑠𝑒

#𝑇𝑟𝑜𝑝𝑒𝑏𝑎𝑠𝑒
(6)

Conflict (confs). Since we already calculate all patterns within a narrative graph,
conflict simply calculates the amount of explicit conflict patterns (#𝑁𝐺𝑐 = 𝐶𝑒𝑥𝑝 ∈
𝑎𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) that exist within a narrative graph normalized by a conflict threshold
𝜔 = 5. We use 𝜔 to avoid stimulating the generation of narrative graphs with a
massive amount of conflicts, which could create noise in the evolution and focus
on the conflicts rather than other tropes and patterns. 𝐷𝑐𝑜𝑛 𝑓 𝑠 is then calculated as
#𝑁𝐺𝑐

𝜔
.

Plot points (pp). Plot points measures the amount of plot points within a narrative
graph (#𝑁𝐺 𝑝𝑝 = 𝑝𝑝 ∈ 𝑎𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) and normalize it by 𝛿. Given that plot points
are dynamically assessed based on other patterns and combination of tropes, we
limit the dimension with 𝛿 to avoid losing coherence in favor of generating more
plot points. 𝐷 𝑝𝑝 is calculated as #𝑁𝐺𝑝𝑝

𝛿
.

Plot Twist (pt). Plot twist measures the amount of plot twists within a narrative
graph (#𝑁𝐺 𝑝𝑡 = 𝑝𝑡 ∈ 𝑎𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) and normalize it by 𝛿. Plot twists relate to
special situations within a narrative graph where the somewhat abrupt change in
the tropes or combination of tropes could alter the narrative and create a surprise
effect. Therefore, we limit the dimension with 𝛿 to avoid “degenerating" narratives
with too many twists. 𝐷 𝑝𝑝 is calculated as #𝑁𝐺𝑝𝑡

𝛿
.

Plot devices (pd). Plot devices measure the amount of active plot devices within a
narrative graph (#𝑁𝐺 𝑝𝑑 = 𝑎𝑝𝑑 ∈ 𝑎𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠) and normalize it by 𝛿. Plot devices
create targets and goals within a narrative, and active plot devices operationalize
these in the narrative graph associating them with multiple tropes; thus, similar
to pt, we limit with 𝛿 to avoid “degenerating" the narrative. 𝐷 𝑝𝑑 is calculated as
#𝑁𝐺𝑝𝑑

𝛿
.
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Table 2: Average values from the experiments using Interestingness and Step as dimensions.
Values in bold represent the best values in the specific experiment between using or not using level
constraints. ★ represents the best values across experiments within their specific condition (using
or not level constraints).

With level constraint No level constraint
Experiment Avg. coverage Avg. Uniques Avg. fitness Avg. Int Avg. coverage Avg. Uniques Avg. fitness Avg. Int
Experiment 1 20.7%±2.8 132±37.6 0.82±0.01★ 0.35±0.02 24.2%±2.2 209.6±27.8 0.8±0.01★ 0.36±0.03
Experiment 2 19.1%±0.9 161.8±20.2 0.82±0.02 0.37±0.02 21.4%±2 290.6±27.2★ 0.8±0.01★ 0.37±0.01
Experiment 3 20.6%±3.9 173.6±55.5★ 0.78±0.02 0.39±0.03★ 24.9%±1.9 244.2±15.9 0.76±0.02 0.39±0.02★
Experiment 4 22.5%±4.1★ 156.4±53.6 0.8±0.04 0.34±0.02 27.8%±2.2★ 267.8±30.3 0.8±0.02 0.33±0.03
Experiment 4.1 6.5%±3 49±31.9 0.67±0.09 0.07±0.02 9.8%±2.6 83.8±40.3 0.72±0.04 0.13±0.05
Experiment 4.2 4.3%±2.7 23.8±16.7 0.68±0.07 0.12±0.08 6.8%±2.6 52±28.2 0.75±0.04 0.15±0.05
Experiment 4.3 10.9%±3.7 62.4±26.9 0.75±0.03 0.27±0.04 15.4%±5.4 124±52.9 0.79±0.03 0.32±0.05
Experiment 4.4 15%±2.1 94.8±19.5 0.79±0.04 0.29±0.06 14.9%±3.8 116.2±41 0.85±0.03 0.35±0.05
Experiment 4.5 14.1%±4.6 82.8±37.9 0.83±0.04 0.33±0.03 14.6%±3.2 93.2±36.9 0.85±0.02 0.32±0.04

Table 3: Experiments using all possible dimensions (7 dimensions) as behavioral dimensions
in the MAP-Elites search. Coverage relates to the pair Interestingness-Step for comparison with
Study 1. Values in bold represent the best values in the specific experiment between using or
not using level constraints. ★ represents the best values across experiments within their specific
condition (using or not level constraints).

With level constraint No level constraint
Experiment Avg. coverage Avg. Uniques Avg. fitness Avg. Int Avg. coverage Avg. Uniques Avg. fitness Avg. Int
Experiment 1 33.2%±1.5 496.2±132.3 0.75±0.05★ 0.32±0.03 36.7%±1.8 1257.8±165.3 0.75±0.02★ 0.33±0.02
Experiment 2 29%±3.4 760.8±100.9★ 0.72±0.01 0.32±0.02 27.8%±2 1221.8±229.3 0.72±0.01 0.33±0.01
Experiment 3 33.6%±1.5 658.2±48.2 0.71±0.01 0.34±0.01★ 37.2%±1.7 1357.4±48★ 0.68±0.01 0.36±0.01★
Experiment 4 35.2%±2★ 690.4±325.4 0.71±0.03 0.29±0.02 38.3%±1.8★ 1314.6±181.1 0.73±0.01 0.28±0.02
Experiment 4.1 6.5%±1.4 56.8±8.5 0.67±0.06 0.04±0.02 10.2%±1.5 118.6±43.5 0.65±0.06 0.07±0.03
Experiment 4.2 8.8%±1.9 74.8±19.9 0.59±0.04 0.07±0.02 9.9%±2.5 153.6±21.9 0.56±0.1 0.09±0.05
Experiment 4.3 16.4%±2.1 123.8±17.7 0.62±0.04 0.19±0.02 23%±1.5 377.2±81.2 0.61±0.07 0.25±0.02
Experiment 4.4 17.8%±3.5 155.8±25.5 0.65±0.06 0.21±0.05 25.8%±1.5 286.8±209.3 0.65±0.05 0.26±0.01
Experiment 4.5 23%±3.2 232.8±69.8 0.67±0.02 0.28±0.03 30.8%±3 891.8±202.3 0.67±0.04 0.3±0.01
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Experiment Setup

We ran a set of experiments using different narrative graphs as starting points
and level constraints to evaluate Story Designer, the use of TropeTwist with IC
MAP-Elites, and its adaptability. Our goal is to analyze how IC MAP-Elites can
adapt to the designer’s narrative graph and how that affects the search space. At
the same time, we explore how we can connect level and narrative and the effect
using level design constraints have on the development and generation of narrative
structures.

We ran each experiment 5 times, set the initial population to 1000 randomly
created grammars, and each individual is limited to test 5 recipes regardless of the
chromosome size. Offspring were produced either by selecting either the left-side
or right-side of a random production rule and exchanging them or with a 50%
mutation chance. If an offspring was generated by mutation, there was a 10%
chance to add or remove a production rule and a 90% to modify existing production
rules in various ways (e.g., removing, adding, or changing part the rule). When
using level constraints, these were enforced as feasibility constraints, effectively
setting individuals as infeasible if violating any constraint.

For each experiment, we used the dimension pairs Interestingness-Step and all
dimensions for IC MAP-Elites to compare different space constraints that would
be employed in an MI-CC system and a full space search across dimensions
similar to Alvarez et al.’s work [23]. Experiments 1-3 consist of reusing the three
proof-of-concept narrative graphs used by Alvarez and Font [14], and testing them
in Story Designer; assessing the impact of level constraints and how the space is
explored in comparison with previous results. Experiment 4 assesses the same as
experiments 1-3 but focuses on evaluating the system’s adaptability and how IC
MAP-Elites respond to design changes, which enables different patterns to arise
in the narrative structure. Experiment 4 is evaluated as a whole and step by step
in the design process (5 core steps). For experiments 1-3, we ran each for 500
generations when using a pair of dimensions and for 250 when using all dimensions.
For experiment 4, each step in the design is done after 50 generations; thus, we
recorded data every 50 generations.

Metrics
All our experiments are evaluated and analyzed following the same procedure
and metrics, focusing on the novel generated individuals and their average across
the 5 runs. In particular, we focus on the average coverage, average unique
individuals, average fitness, and average interestingness. Average coverage is the
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cumulative coverage of the search space after a set of generations focused on the
Step-Interestingness dimension pair. Average uniques is a simple count of how
many novel individuals were created throughout the experiments. Average fitness
calculates the average individual fitness in the search throughout all generations.
Finally, average interestingness calculates the average individual interestingness in
the search throughout all generations.

Narrative Graphs for Experiments
Figure 2 and table 1 show the target narrative graphs used in each experiment
and their level design constraints, respectively. Experiments 1-3 use the proof-of-
concept narrative graphs presented by Alvarez and Font [14] and experiment 4 uses
a handmade narrative graph, exemplar of what a designer could create in Story
Designer.

Experiment 1 represents the overarching narrative structure of Super Mario Bros.
(SMB) [50]. Mario (HERO) has as objective to rescue Princess Peach (HERO)
from Bowser (BAD), who keeps Peach as a prisoner until Mario beats it, creating a
derivative and conditional relation between Bowser and Peach. Before reaching
Bowser, Mario must face "fake Bowsers" (DRA). Experiment 2 represents the
structure from the eastern palace in Zelda: A Link to the Past (Zelda:LttP) [51].
Link (HERO) has as a goal the "Pendant of Courage" (MCG), but in order to
collect it, Link must face ENEMY and BAD since there is a derivative pattern
connecting them to (MCG). All palaces in A Link to the Past follow a very similar
structure and sequence. Experiment 3 represents a simplified overarching structure
from Zelda: Ocarina of Time (Zelda:OoT) [52]. Young Link (HERO) has as a goal
to collect/receive the Ocarina of Time (MCG), which enables the appearance of
Adult Link (NEO). Achieving this goal creates conflicts between several heroes,
Link and Zelda - Sheik (NEO, SH), and Gannondorf (BAD).

Experiment 4 was designed with the capabilities of Story Designer in mind; step
by step as a designer would create the narrative structure. First, it starts with the
default structure; a HERO has a CONFLICT with an ENEMY. Subsequently, the
structure is changed to fine-tune the ENEMY to BAD and create a goal (MCG) for
the HERO. Another enemy (DRA) is added, creating a side conflict for the HERO
(i.e., BAD is by definition the “final boss"). Finally, the DRA is connected with the
MCG with an entail connection, effectively making the DRA part of the game’s
main loop.
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Figure 3: Rows show experiment 1-3, respectively. Each narrative graph can be seen in figure 2.a-c,
respectively. The first two columns are using interestingness-step as dimensions, and the other
columns are using all dimensions in the search.

Result and Analysis

In tables 2 and 3, we present the results based on our metrics for the four
experiments. Table 2 uses interestingness and step as dimension for MAP-Elites,
while Table 3 uses all dimension during search. To complement the analysis,
figure 3 shows an exemplar expressive range analysis (ERA) for experiments 1-3 in
the different configurations, and figure 4 shows an exemplar ERA for experiment
4 and an exemplar Temporal ERA (TERA) of the design steps. An ERA is an
evaluation method to explore and visualize the expressiveness of an algorithm
in content space [53]. TERA is an extension of ERA that allows the inspection
and analysis of changes in expressiveness over a defined period, which, when
used in a non-aggregated fashion, as in experiment 4, shows the delta maps of the
search [43].

Analyzing and comparing the experiments show similar and consistent results
across experiments regardless of using level design constraints or not, and using
all dimensions or just a pair. Experiments 1-3 present consistent and stable results,
similar among them in all metrics except coverage, which is more influenced by
the specific graph and what type of information it provides, such as patterns, nodes,
and connections.
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Figure 4: Expressive Range Analysis (ERA) and Temporal ERA (TERA) for Experiment 4. The
first row is the general results for experiment 4 (ERA), while the subsequent ones are the individual
results per step taken in the narrative structure design (figure 2.d) (TERA). The first two columns
are using interestingness-step as dimensions, and the other columns are using all dimensions in
the search.

Experiment 4 shows MAP-Elites adaptability throughout the different design steps,
especially visible in figure 4. In the first two steps (4.1 and 4.2), MAP-Elites
exploration is limited due to the narrative graph’s simplicity. This is expected as
the default narrative graph (HERO –> CONFLICT –> ENEMY) and the fine-tuned
(i.e., ENEMY changed for BAD) has an interestingness score of 0 and, when used
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as a target, hinders the exploration with or without level constraints. However, as
the design progresses, MAP-Elites adapt. Minimal input into the graph (experiment
4.3, onwards) improves the search and interestingness following the design’s trend.
IC MAP-Elites maintain properties such as adaptability and stability shown before
for level design generation, making it adequate for the evolution of grammars and
narrative structs as well.

Experiment 4 also shows a concrete example of how the narrative graph would
be used and designed by designers to change components in a game and enable
different narrative structures. When put in context with the graphs for experiments
1-3, show relative diversity and expressiveness in the system. Experiment 4 and
its steps show as well how the structure can relate to different "in-game" and
level components, how, through the structure, designers can design main and side
objectives, and how these could be approached. For instance, the DRA as a side
conflict in the game and then incorporated as a main part of the game since to get
the MCG, the HERO needs to face the DRA. That could then be used, in practice,
to change, constrain, or adapt quests or part of the level design to be aligned with
the structure.

Furthermore, both tables seem to show similar patterns when using level design
constraints or not. Fitness and interestingness vary slightly (avg. +0.01 and -0.003,
respectively), whereas coverage and unique individuals are worst (avg. 3.1%, 366.9,
respectively).1 The lower unique individuals are expected since the search space
is more constrained; thus, individuals that would otherwise be feasible (i.e., fully
connected graph and without inadequate self-conflicts) would become unfeasible
with the level constraints. A similar analysis could be expected from the slightly
higher or comparable fitness since the lesser the individuals that are generated,
the lesser fitness’ variance. However, this also shows a practical and possible way
to intertwine and enforce inter-facet constraints, since when adding level design
constraints to the narrative generation, due to the more delimited space, the search
can be more guided and focused and still generate quality-diverse content [54, 55].

The results point towards IC MAP-Elites, due to its constrained features and
adaptability properties, being agnostic to these inter-facet constraints, which allows
and ease the incorporation of these constraints in the system without having a
major impact on the development. The tradeoff is then clearly that the possibility
of the system to search for more or more complex narrative structures when using
constraints is reduced since they would most probably violate constraints.

When comparing the use of a pair of dimensions (interestingness and step) and

1These values are a combination of both table 2, 3
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all dimensions in the search regardless of having or not constraints, the difference
is expected regarding coverage (avg. 11.2% more) and unique individuals (avg.
765.3 more) generation since MAP-Elites will be able to encounter and store elites
in a bigger grid. However, the quality of the individuals is subpar in comparison
with a pair of dimensions regarding fitness (avg. 0.08 more) and interestingness
(avg. 0.04 more). This result is in line with [23], where their results, applied to
level design, showed more coverage and individuals generated when using all
dimensions but focusing on suboptimal parts of the space. Figures 3 and 4 show that
the experiments explore similar spaces, sparser when using a pair of dimensions
and denser when using all dimensions. When observing the heatmap intensity, the
search focus is distributed across the search space when using a pair of dimensions,
while when using all dimensions, the search is focused on high step levels.

Conclusions and Future Work

In this paper, we have presented the first iteration of Story Designer as a step
towards a mixed-initiative co-creative system implementation of TropeTwist [14]
to design narrative structures in EDD. The system allows the creation of narrative
structures as narrative graphs that defines the overarching narrative, identifying
characters, their roles and involvement, objectives, and core events. Story Designer
also presents a step towards creating a holistic system, intertwining level design
and narrative through simple level design constraints, effectively delimiting the
search space of MAP-Elites with promising results. We analyzed and evaluated
Story Designer and the impact of these level constraints through four simulated
experiments; experiments 1-3 approach Story Designer in a more static scenario,
while experiment 4 focuses on the step-by-step creation process.

Experiment 4 and, in general, the design process in Story Designer shows how
the tropes, nodes, and connections, can be used to design a narrative structure
step by step, changing the components of the narrative and how different elements
in the game can be used and interpreted with simple changes. Defining conflicts
among characters (thus, creating factions), defining primary and side objectives,
as well as important elements in the narrative (e.g., plot devices), is a simple
process. Changing these to adapt to the designer’s goal is possible with minimal
input. For instance, see the change from experiment 4.4 to 4.5 (fig. 2.d4,d5), where
DRA passes from a side objective to a main part of the structure by creating an
"entails" connection and forming a DerP meso-pattern (increasing the graph’s
interestingness score to 0.33). Equally important, the system preserves its properties
and adapts to the narrative graph created, which could create a better experience
for the designer. However, our evaluation was through simulated design sessions
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(especially, experiment 4) highlighting properties and tradeoffs of the system.
We aim at evaluating Story Designer with a user study to assess its usability,
the expressiveness designers have when creating structures, and the experience
intertwining and creating level design constraints.

Our next steps would be to continue the development of Story Designer to
reincorporate the narrative structure into other facets and systems. Following a
similar approach with constraints, narrative structures could constrain the search
space for other facets, creating a feedback loop across facets and systems for
a holistic approach. For instance, within EDD, narrative constraints could be
reincorporated into both the level design facet [44] and the quest system to adapt
main and side objectives [12].
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ABSTRACT

In Mixed-Initiative Co-Creative tools, the human is mostly in control of what
will and can be created, delegating the AI to a more suggestive role instead of a
colleague in the co-creative process. Allowing more control and agency for the
AI might be an interesting path in co-creative scenarios where AI could direct
and take more initiative within the co-creative task. However, the relationship
between AI and human designers in creative processes is delicate, as adjusting the
initiative or agency of the AI can negatively affect the user experience. In this paper,
different degrees of agency for the AI are explored within the Evolutionary Dungeon
Designer (EDD) to further understand MI-CC tools. A user study was performed
using EDD with three varying degrees of AI agency. The study highlighted elements
of frustration that the human designer experiences when using the tool and the
behavior in the AI that led to possible strains on the relationship. The paper
concludes with the identified issues and possible solutions and suggested further
research.
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TOWARDS AI AS A CREATIVE COL-
LEAGUE IN GAME LEVEL DESIGN

Introduction

Collaboration between AI and humans to co-design and co-create content is
a significant challenge and the main focus of Mixed-Initiative Co-Creativity
(MI-CC), which is the joint effort by a human user and AI to create content
together [1, 2]. In an MI-CC environment, designers can unleash their creativity
while the computer ensures playability, measures quality, and potentially inspires
them towards more creative designs. These systems’ objectives are to foster
creativity and provide seamless proactive collaboration, ultimately enabling a
mutually beneficial collaboration. The AI role has been categorized depending on
the computer agency and initiative: nanny, pen-pal, coach, and colleague [3]. For
an AI to be a colleague, it would have to intervene in the human process and take
initiatives directly affecting the end product and creative process.

Morai Maker is an AI-driven Level Editor for Super Mario Bros-style games [4],
which aims at having an AI as a colleague, with an equal role as the human
designer, both adapting to each other. The Evolutionary Dungeon Designer (EDD)
is a mixed-initiative design tool for rogue-like dungeon games [5]. EDD uses an
evolutionary algorithm (MAP-Elites) to constantly generate finished rooms for the
user to pick and replace their design based on the user’s manual designs. The AI
does not have any definitive control over the design decisions. Rather it suggests
content adapted to the designer’s current design, and the designer has the option
not to incorporate the AI in their creations [6]. Nevertheless, it seems relevant
to explore how other degrees of AI agency could affect the resulting co-creative
process in terms of frustration, constraints, efficiency, or diversity, compared to
when two humans create together. This comes with potential issues derived from
altering the AI’s agency; that human creativity can be dampened by restrictions in
the creative process [1].

This paper explores how AI with varying degrees of agency affects the human
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Version properties AIv1 AIv2 AIv3
Can override AI-tiles ✓ ✓

Can override human-tiles ✓ ✓ ✓

Places directly ✓ ✓

Table 1: Properties and differences between AI versions

users’ design process in EDD. Three different versions of the tool are developed
with varying degrees of the AI’s control over the design process. These versions
are then examined in a user study, and the results are analyzed to understand
further the colleague relationship between humans and AI in MI-CC systems.
The study also analyzes the degree of support these three AI companions have
on lateral thinking, which is a vital part of the creative process. By assessing the
three variants of agency, it is possible to compare the differences in the resulting
creative relationships between the designer and AI, identifying factors that affect the
designer’s creative process in terms of frustrating elements, perceived limitations,
and adaptation to their creative colleague.

Related Work

MI-CC focuses on tackling tasks between humans and AI with proactive initiative,
where AI does not only assist humans but could also collaborate with them,
leveraging on both their strengths [1,7]. Initiative is a multi-factor model combining:
choosing the task, the agent in control and how the interaction is established, and
the expected outcome [8]. In this work, both humans and AI have the same task,
and the interaction is established as turn-based, each taking discrete control. The
outcome is expected to vary as AI agency increases since larger constraints are
added for the human that might need to adapt towards those.

Some MI-CC systems enable different collaborative approaches, which are consid-
ered in this paper. Tanagra [9] is a design tool for platform levels where the system
takes as input and constraints the current user’s design and creates content fulfilling
gaps around it. Morai Maker [10] is an MI-CC tool where the human designer and
AI take turns to design Super Mario Bros. levels. The AI adds content in its turn,
which can be maintained or erased by the human designer, which the AI learns to
adapt to through reinforcement learning. Furthermore, Lode Encoder [11] explores
a creative collaboration where the human is constrained by only being able to use
AI-generated content, which they need to choose to compose their design. This
shows an unusual collaboration that users expressed as a playful, game-like creative
process.
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This paper uses EDD as the tool to explore AI agency and control. EDD is an
MI-CC system where designers can create interconnected rooms composing a
dungeon [6]. As designers create their content, the AI constantly suggests content
adapted to the designer’s design using the Interactive Constrained MAP-Elites
(IC MAP-Elites). We make extensive use of IC MAP-Elites to generate rooms
that are adapted to the target room. In [12], the authors show that IC MAP-Elites
can generate high-performing and diverse rooms from different targets and using
different dimension combinations. Its adaptiveness and stability, two necessary
properties, were assessed with continuously edited rooms in [13], showing that the
designer has a positive effect and can steer the algorithm with their design.

AI Roles and Adaptability
Lubart discusses four different roles a computer might take to promote creativity;
computer as nanny: management of creative work; computer as pen-pal: com-
munication service between collaborators; computer as coach: Using creative
enhancement techniques; and computer as colleague: partnership between com-
puter and humans [3]. This is further explored by Guzdial et al. where designers
perceived the AI collaborator with more or less value depending on their desired
role for the AI, varying between: friend, collaborator, student, or manager [4].

Establishing different roles such as colleague and collaborator might require some
user model within the system. Designer modeling, as defined by Liapis et al. [14],
is a way to classify and predict a designer’s style, goals, preferences, and processes.
Preference models [15, 16] have been built based on designers’ choices and used
as surrogate models to evaluate further generated content. Similarly, using the
designers’ creation, the designers’ processes and styles could be modeled to inform
other systems and adapt the generated content [17–19].

Altering Human-AI collaboration dynamics

The standard version of EDD presents a unidirectional relationship between the
human designer and the AI, where the AI can only suggest content adapted to
the designer’s room, called the target room. As concluded in Morai Maker [10],
allowing the human designer and the computer-controlled agent to take turns
in the creative process enables the possibility of an even influence between the
co-creators; thus, the human user and the AI take turns placing down tiles. Here we
present three modified versions of EDD that implement three different dynamics
for the human-AI co-creative process.
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Figure 1: Percentage of tiles per co-creator in the rooms. Blue and Red bars relate to AI and
Human placed tiles, respectively.

AI Version 1 (AIv1) - Low degree of agency
In this version the AI takes a suggestion colleague role. As the human manually
designs a target room, the AI suggests tiles directly on top of the design. The human
has the option to make use of the suggested tiles at will, placing them on the target
room by clicking on them in the user interface. Both the human and the AI can
override each other tiles.

AI Version 2 (AIv2) - Medium degree of agency
In this version, the AI places directly its recommended tiles rather than suggesting.
Like in AIv1, both the human and the AI can override each other tiles.

AI Version 3 (AIv3) - High degree of agency
Unlike in the other versions, in AIv3, the human designer cannot be the sole
contributor to the room designs. The AI places the tiles on their turn rather than
suggesting, and the human cannot overwrite them. However, the AI can overwrite
human tiles in their turn. This allows the exploration of how human designers react
to being in a co-creative relationship where the AI has more control than them and
add constraints to their design and goals.

The Design of the AI
The goal is for the AI to be perceived as dynamic, responsive, and helpful but not
totally predictable. These qualities were selected to try to create a co-creator that
supports the design choices of the human but also introduces unexpected elements
to stimulate lateral thinking. By making the AI dynamic and responsive, the aim is
to minimize the risk of unsatisfactory asymmetric design between the AI and the
human, as reported by [10], where some of the critiques mentioned that the AI was
designing its own parts of the level instead of creating consistency with the human
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designer’s contributions.

For all three versions of the AI, the AI component creates and regularly updates a list
of generated tiles. IC MAP-Elites constantly runs in the background, maintaining
a list of elites across its seven dimensions. When the human ends their turn, the
elites are processed by a KNN algorithm (K=20) that picks the set of tiles that
will be used by the AI contributor comparing the elites to the target room on
the seven dimensions. The resulting list of elites is further processed tile by tile,
creating a final list that contains the most reoccurring tile types per position in the
contribution area, which constitutes the list of generated tiles for the computer to
use. From this list, and to further the perception of the AI being dynamic, it selects
a random amount of tiles between 50% and 100% of the amount of human-placed
tiles. However, through this process it is likely that the agent will not be human-like.
For example, humans are likely to favor symmetry in a room, but the AI in this
tool will consider all dimensions equal. The AI will also consider all types of
tiles equally when calculating the most common tile in a position in the generated
rooms.

Furthermore, depending on the level of agency, these tiles are just displayed as
suggestions on the UI or directly placed when the computer takes control of the
creative process. Both creators have a maximum of 12 tiles that they can contribute
per turn. This was determined through experimentation during development since
it is large enough to allow the designer to create a small subsection during their
turn. If the human does not contribute one round before pressing "End Turn," the
previous turn’s amount of tiles are used for the calculation to enable the human to
press "End Turn" repeatedly to let the AI keep contributing if that is desired. The
available locations for the AI to contribute each turn are limited to a rectangular
area surrounding the tiles the human designer recently placed, including a margin
of 1 tile.

Experiment Setup

We conducted a user study to explore the user experience of using different levels
of AI agency, the different design characteristics, and the relationship between
the human designer and the AI. We collected both quantitative data on the AI’s
impact on the co-designed end product and qualitative data through think-a-loud
and semi-structured interviews regarding the users’ experience when interacting
with the AI. The interview structure is inspired by the pyramid model, meaning
the interviews will begin with specific questions, and gradually have more open
questions, which naturally allows for a discussion towards the end. This model is
chosen to support the variation of subjects the interview is desired to cover, as
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AIv1 AIv2 AIv3
Leniency 0.56±0.07 0.62±0.09 0.57±0.08
Linearity 0.91±0.02 0.92±0.02 0.91±0.01
MesoPat 0.15±0.05 0.13±0.07 0.12±0.05
SpatialPat 0.35±0.1 0.41±0.11 0.34±0.09
Symmetry 0.43±0.11 0.35±0.18 0.35±0.12
𝑊𝑑𝑒𝑛𝑠 0.27±0.09 0.26±0.08 0.21±0.05
𝑊𝑠𝑝𝑎𝑟 0.21±0.05 0.19±0.03 0.15±0.01
𝐸𝑑𝑒𝑛𝑠 0.24±0.07 0.27±0.06 0.3±0.06
𝐸𝑠𝑝𝑎𝑟 0.22±0.05 0.32±0.05 0.35±0.06
𝑇𝑑𝑒𝑛𝑠 0.37±0.13 0.28±0.09 0.34±0.07
𝑇𝑠𝑝𝑎𝑟 0.36±0.11 0.3±0.1 0.37±0.05
Steps 39.25±6.38 84.31±14.85 76.75±17.02

Table 2: Summary of the created rooms filtered by the AI version used. All values are the average
of all the created rooms using the specific AI version. The first five values relates to the MAP-Elites
dimensions, then the fitness of the rooms, the density and sparsity values for wall (W), enemies
(E), and treasures (T), and finally the avg. steps taken to design a room.

well as support natural transitions between the questions and their openness. The
questions and user study procedure can be found in Appendix A.

Eight participants tested our tool with game design and level design experience.
One participant was a professional game designer with eight years of professional
experience (first participant), and seven participants were third-year Game Devel-
opment students. They all had an individual digital session, where we shared our
screen, and they took remote control to conduct the study. Participants accepted to
participate, signed consent forms, and then received a short introduction describing
the experiment and its steps. The participants were then asked to design two
contiguous rooms in a dungeon, repeating this process for each of the AI variants
and expressing their design decisions verbally whenever they felt like it. After
using the tool, the participants were interviewed, focusing on and covering an
overarching understanding of the user experience, particularly in terms of creativity
and interaction with the AI.

For all the sessions, human designers could place up to 12 tiles, and the AI
could place as many tiles as the human placed. The AI could contribute only in
a rectangular area surrounding the tiles the human designer recently contributed
with, including a margin of 1 tile. This choice is made to support a responsive and
collaborative behavior of the AI that builds on the human designer’s contribution.
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AI replaced Human replaced Interactions
AIv1 3.31±2.1 1.63±1.47 3.88±0.59
AIv2 24.94±6.67 12.06±5.29 8.56±3.28
AIv3 19.25±5.13 0 9.13±3.64

Table 3: Summary of the interactions between AI and human. The first two columns relate to
the avg. amount of tiles that the AI or human replaced of each other. Interactions refer to the avg.
number of times the human pressed “End Turn.”

Results

We present the results from the user study regarding the designed rooms, the room
design process with the AI, and the participant’s interview responses. Figure 1 and 2
show the tile contribution for both human and AI per room and tested version, and
the final tile distribution across all versions, respectively. Figure 3 shows a sample
of the designed rooms corresponding to the different AI versions, respectively.

The designed rooms, when interacting with the AIv1 (fig. 3.a), generally include a
vast majority of human-placed tiles or unedited tiles (86%). Many of the rooms
display treasures and enemies placed close to each other, often with an enemy
blocking a treasure. As displayed in fig. 3.b (AIv2), rooms contain more AI edited
tiles (51%), and long continuous walls are less common compared to when using
AIv1. Fig. 3.c shows a sample of the designs using AIv3. The resulting rooms are
less symmetric, contain fewer continuous walls, and are, in general, somewhat less
organized.

The relation between the total amount of tiles placed by the human designer and
the AI for each version provides insight into how much the human designers
incorporated the AI in their design process. When using AIv1, the human designers
generally contributed with a majority of tiles to the resulting room (86% in general).
When using AIv2, the results vary more between rooms and/or designers, such
as fig. 3.b 1 and 9 with a general 49% of tiles placed by humans. In AIv3, the AI
generally had a majority of tiles in the resulting rooms (32% placed tiles by human
designers in general). Figure 2 shows the tiles by each co-creator. Whereas human
designers focused mostly on walls and structures, the AI focused on removing tiles
and adding floors.

Furthermore, table 2 and 3 summarizes the created rooms by AI version. Table 2
shows that there is not much variation regarding the IC MAP-Elites dimensions,
but Symmetry and Meso patterns reduce as the AI gains more agency, and there
are fewer spatial patterns in the high and low agency. It also shows that wall and
enemy density and sparsity go lower and higher, respectively. This is expected,
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given that as the AI is more dominant in the design (fig. 1), walls are diminished
(fig. 2), which can also be observed in the examples in fig. 3. Finally, designers
spent less time on their design for AIv1 and AIv3. In AIv1, designers can edit
rooms towards their goal and the AI does not modify their design (unless wanted),
which means that the designer does not need to modify the room much. This is
expected to increase for AIv2 and AIv3 because the AI now adds its editions,
which count towards the steps. However, since the AI can add as many tiles as the
designer, the designer is still doing roughly half of the steps. When using AIv3,
rooms take slightly fewer steps than AIv2, probably due to the AI taking over areas
where to design and designers trying to work around constraints further discussed
in the next section.

Table 3 shows the interaction between human and AI. As expected, the human
designers interacted less with the AI in AIv1, and in general, they overwrote less
since they could decide which elements from the AI to include. Five out of the 16
rooms included AI-placed tiles where the human designer did not replace any of
the AI tiles. Interactions and human and AI tile replacements increase for AIv2
and AIv3, which is also expected. The AI overwrote an avg. of 24.94 and 19.25
tiles in each subsequent version, and human designers overwrote an avg. of 12.06
in AIv2. This shows that the AI had more involvement and changed the design
more often. The human designer could either use their turn to replace the tiles or
continue using those tiles. However, in AIv2, the designers did not replace all of
the AI tiles; instead, they also chose to work around them and replaced them when
needed, allowing the AI to participate more. In 13 out of the 16 rooms created the
designer replaced fewer tiles than the AI did, and for 9 of those it was less than
50%.

Perceptions of the different AI versions
Four participants preferred to use AIv1 due to higher controllability over the final
design. Two participants preferred AIv2 since they liked the efficiency of the AI
placing down tiles, but they still remained in control over the design process. One
participant said that they preferred both AIv1 and AIv3, as they felt that they
fulfilled different purposes. AIv1 contributed with inspiration to get out of a writers
block kind-of situation in level design, while AIv3 offered a more unusual creative
experience, and created unique levels. One participant preferred AIv3 categorizing
it as more efficient. However, AIv3 was the most disliked due to most participants
feeling constrained by the AI’s decisions, which forced themto workaround the
AI’s design; too invasive on their design process, and in general, feeling the AI
dismissed their contributions. Two participants disliked AIv2 the most due to

370



Figure 2: The types of tiles placed and their percentage of occurrence by human designers (a) and
the AI (b)

frustration and slowing their design process because of the repetitive work of
recreating their original idea as the AI would overwrite their tiles. One participant
disliked AIv1 as it was the slowest to work with.

AI’s behavior

Figure 3: Sample resulting rooms from the study. a, b, and c are samples from the same users
using the different versions. Red borders indicate that the room contains unreachable tiles. Purple
tinted tiles are the ones added by the AI.

Five participants described the AI’s behavior as random and unpredictable. Many
mentioned that the AI often placed floor tiles over the human-placed walls, treasures,
enemies, and bosses. Additionally, two participants mentioned that the AI often
broke down sub-rooms or long walls with floor tiles. The more positive descriptions
of the AI’s behavior were that the AI repaired their level if it had unreachable tiles
by placing floor tiles on the positions wall tiles were, making all tiles reachable. One
participant expressed that they thought the AI created unique-looking high-quality
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levels.

The Creative Relationship
Five participants expressed that the AI contributed with ideas they liked and either
kept or considered incorporating. Many also expressed that they found it frustrating
that the AI overwrote the human placed walls, treasures, enemies, or boss tiles with
floor tiles, as they perceived this as the AI removing their contributions without
adding anything new. All participants answered that they did adapt to AIv2 and
AIv3 during their design process. When using AIv2, the participants adapted to
the AI by either being inspired by the AI’s contribution or by getting frustrated
with the AI repeatedly placing tiles the human designer did not like. When using
AIv3, they felt they had to adjust to whatever the AI contributed and felt forced
to adapt. Additionally, six participants answered that they did not feel that the AI
adapted to them. One answered that it did feel that the AI adapted to them, and one
participant had no opinion.

Four participants described the relationship as working together with someone who
only says no to your ideas without contributing to new ideas. Three participants
described it as frustrating and/or a fight for control between the AI and the human
designer. Two participants described it as an iterative collaboration and compared
it to two people working on the same product but in different steps. One participant
described the relationship as a brainstorming session where you work in a “Yes,
and..." fashion, meaning you work iteratively and only adds to the idea and never
decline the other collaborator’s contribution.

The Creative Process
Four participants mentioned that the AI negatively affected their creative process,
especially when the AI placed floor tiles over their placed walls, treasures, enemies,
and bosses. This was described by multiple participants as the AI “destroying
their creations", and many felt forced to let the AI “take control over the room."
Two participants described the creative process as the AI and the human designer
working against each other. Two other participants described it as a process where
the AI brought forward ideas that they found interesting. One participant described
it as letting the AI form an idea that the human designer finally polished.

Constraints and Design Goals
Five participants answered they felt progressively more constrained as the AI
gained more control, although one participant answered that they did not feel
constrained at all with any of the versions. Six participants answered they had a
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design goal of creating a boss room. However, the AI placed floor tiles over the
boss tiles, making this impossible in AIv2 and AIv3, forcing them to change their
design goals. Two participants answered that they did not have set design goals
and solely created content each turn with no specific concept for the whole room
in mind.

Figure 4: Sample step by step process when using AIv2. Human’s turn is top row, while the AI’s
turn is the bottom row.

Discussion

Willingness to include the AI in the design process
All participants expressed an interest and willingness to see what the AI could
come up with to design the rooms, emphasizing that they either considered or
incorporated the ideas brought forward by the AI, which further supports other
MI-CC research conclusions [4,11]. However, many participants expressed multiple
frustrating factors, and based on figure 1.a, when given the opportunity, the human
designers did not include much of the AI’s contribution but might have provided
some ideas that either influenced or were part of the final design. Figure 1 also
displays that as the AI got more agency, the AI tiles at the end design increased.
This can be due to frustration expressed by participants where they didn’t agree
with the AI design and ended up handing over the control to the AI and giving up,
to some extent, their aspiration to create. The lower meso- and spatial-patterns
combined with the lower symmetry in AIv3 are also part of the issue. The fewer
patterns that exist mean that the rooms are less structured, which, combined with
no way to correct these, could result in designers feeling that the levels are more
“random".

Variants of the users
Most participants used the tool similarly except for participants 1 and 6. Participant
1 didn’t want to incorporate the AI’s contributions, as it can be seen in fig. 1,
explicitly stating that “... I don’t think level design is a good place for an AI that
has more control than the human... The little details that I love in level design
would never be created by an AI. Nice little references, or easter-eggs, or how
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humans get inspired by simple things..." On the other hand, participant 6 recurrently
incorporated many of the AI’s tiles. When using AIv2 and AIv3, they pressed “End
Turn" repeatedly to find out what the AI would be able to create, commenting “I
want to see if it can create something cool." However, while their approach was
completely different, they both agreed that they would prefer the AI to create a
complete room, and they could polish it from there.

Frustrating factors and Constraints
The participants expressed multiple frustrating factors within the tool. The main
point was the repetitive behavior of overwriting the human tiles with floor tiles,
removing their ideas without contributing with anything of value, and the human
designer feeling forced to move on from those positions and contribute somewhere
else in the room. This was exacerbated when using AIv2 as, unlike AIv1, the AI
placed down the tiles rather than suggesting, and unlike AIv3, the human designer
still had the option to overwrite the AI-placed tiles. The human designers assign
value to each tile type as they provide different aspects in level design; for instance,
participants often placed enemies and treasures close to each other, possibly to
create a risk and reward in the level. Figure 4 shows one example of a participant
creating a room using AIv2, step by step. The human designer’s first contribution
includes a long continuous wall and a boss. When the AI has its first turn, it
contributes with floor tiles overwriting the designer’s tiles. Towards the end of
the design, the human designer places a boss tile in the bottom left corner that
the AI overwrites with floor tiles twice before the human designer gives up and
finishes the room without a boss. This sample creation process shows that the AI
tried to steer the room towards more leniency and open areas, which contradicted
the human’s goal.

Another main frustrating factor was the loss of control experienced by human
designers when co-creating with the AI, especially AIv3. Participants expressed
that the AI’s decisions limited them and were forced to work around what the AI
designed. As the AI gained control, they felt their creative process got increasingly
constrained. This aligns with the Lode Encoder study [11], where the participants
expressed frustrations with completing a playable level, as they were forced to rely
on the AI to generate the option they wanted in the final stages of the level creation.
Further, when using AIv3, the number of positions that the human has available
decreases with every turn, while the AI can continue to place tiles on any position,
which unavoidably limits the human’s control over the final design.

Most of the participants felt frustrated and constrained as the AI gained more
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control over the design process. Additionally, all participants suggested removing
the turns and constraints of the number of tiles per turn to improve the tool. Three
of the eight participants expressed that adjusting the AI’s role to one of an assistant
to the human designer would improve their creative experience.

The concept of a well performing, high agency co-creator
Most participants showed a willingness to incorporate AI into the creative process,
contributing with new ideas or performing services such as ensuring feasibility.
Yet they were reluctant to incorporate higher agency AI, which suggests that the
AI needs to be aligned with their goals, intentions, and procedures, i.e., have an
accurate designer model [14]. Within EDD and level design tools, multiple practical
improvements are to be made. Five participants described the AI’s behavior as
random and unpredictable, especially when overwriting human-made structures and
contributions. The AI currently calculates the most common tiles in the positions
of the contribution area and contributes with the tiles of highest occurrence among
a set of generated elites. This contradicts how human designers perceive the design
importance of tiles, valuing higher usable tiles rather than floors. The AI could
then weigh higher those and the combined structures they create. Additionally,
the AI could favor unedited areas before overriding human-placed tiles to support
rather than override.

Another important point is that all AI versions are static in the design process,
which means that the AI follows the same procedure regardless of the agency level.
The collaboration do change in the design process (e.g., suggest or directly placing
tiles, or if AI tiles can be removed) but other aspects and parameters do not change
or adapt to designers. These parameters are connected to the overarching design
of the AI rather than the AI’s agency, which might have affected the designers’
perception. For instance, given that the AIv3 tiles could not be replaced, changing
the amount of tiles, rectangular area, or its adaptability in regards to what the
designer had created thus far could be beneficial.

Furthermore, the AI seemed to break apart walls and open up sub-rooms. This is
possibly a result of the Linearity and Meso-Pattern dimensions in the MAP-Elites
algorithm. The resulting elites of the generated rooms with the highest linearity will
have the highest amount of traceable paths. Many participants seemed to want to
create rooms with long walls, sub-rooms, paths that required the player to encounter
enemies, and common aesthetical features such as symmetry. Analyzing the path
designers are taking in these dimensions could better inform the search for content
and the generation of elites, so the content is adapted to those preferences. However,

375



adapting these dimensions might be counterproductive for the other dimensions,
as symmetric rooms might not create balanced rooms regarding the Leniency
dimension as it might not be considered as important. Another approach could be
to incorporate designer modeling. By identifying possible design goals or design
styles of the human co-creator, the AI can adjust its decisions and behavior to offer
different levels of support depending on the human designer’s behavior [14, 18].

Conclusion

This study explored the limitations and possibilities of an MI-CC-tool with an AI
with a varied agency. We aimed at doing an initial exploratory study with static
parameters, resulting in baselines to analyze what can be done and how designers
experienced the system. This, in turn, opens up and continues the discussion
towards AI collaborating as a colleague and enabling alternative ways to foster
creativity (e.g., constraining the design space such as in [11]). Our study showed
that AI gaining control over the design results in frustration and feeling constrained.
Constraints are not bad per se, as they can be a way to foster creativity [20, 21],
but they need to be placed in a way that the human designer might feel inspired,
motivated, or supported to continue the design. Human designers had to adapt
towards those imposed goals instead of the other way around, which creates an
unwanted dynamic when human designers perceive the AI’s behavior as erratic,
random, and without clear objectives.

Many of the results pointed to a general preference for an AI with a more supportive
role in collaborative tools. One approach could be to have a hybrid model between
what is presented in this paper and other typical MI-CC systems that focus more on
suggesting final designs. The AI could take parameters from the human designer,
such as an area in a room, amount of tiles, or an attribute that the human designer
would like to increase in the room, but still maintain their design, effectively
constraining the AI to find creative ways to achieve its goals. In EDD, designers can
lock tiles to not be changed by the AI, which is something to be experimented with.
Although this would give the human designer a slightly higher degree of influence
on the end product compared to the AI, the constraints of how many tiles can be
locked, or possibly what types of tiles can be locked, can be experimented with to
adjust the relationship between AI and human designer. Currently, the search is
steered, to some extent, by the designers’ design, but in future work, we could bias
the search even more towards interesting areas based on the creation process and
the trajectories they are taking in behavior dimension space.

Additionally, using designer models is a feasible approach. By predicting design
goals, adapting to phases of the design process, or identifying certain design styles
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and adapting to the human designer, a responsive and adaptive, intelligent, and
human-like artificial co-creator could be developed. This could allow for an AI that
adapts to the human designer and performs well enough that the frustrations and
feelings of constraints are minimal or perceived as less prevalent as the designs
turn out more similar to what the human desired.

Appendix A

Interview procedure and questions
Setting up a user study session

1. The conductor starts a meeting in Zoom.

2. The conductor explains the steps to the participant.

3. When consent of recording the session is acquired by the conductor, the conductor
starts recording.

4. The conductor starts the tool and shares the screen.

5. The conductor allows the participant to control the conductors machine via
Zoom remote control.

6. The conductor instructs the participant to perform the test.

Instructions

The task is to design at least two rooms in a dungeon world, with each variant of
the AI.

• Step 1: Choose the LOW level of the AI and click “Create World”.

• Step 2: You are now in the World Editing View. Edit as you please. To enter the
room editing view, double click the room you wish to edit.

• Step 3: You are now in the Room Editing View. Use the brushes on the left to
edit the room. Click “End Turn” to end your turn, and let the AI contribute.

– AI-placed tiles are tinted purple. AI-suggested tiles are tinted green.

– If you are in the LOW variation of AI, click the green suggestions you’d like
to place. Click continue when you want to have your turn again.

– To go back to the World Editing View, click “Go To World View”.
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• Step 4: When you feel satisfied with your creation, tell me so. Restart the
program. Start over at step 1 for the next AI version until all three are used once.

Interview Questions

• Q1: Which of the three versions of AI did you prefer? Why?

• Q2: Which of the three versions of AI did you find least appealing? Why?

• Q3: How would you describe the creative experience?

• Q4: What is your perception of the AI’s behaviour?

• Q5: Did you feel your creativity was constrained when using any of the three
AIs?

• Q6: Did you adapt to the different AI versions? In what ways?

• Q7: Did you perceive that the AI adapted to you? In what ways?

• Q8: How would you describe the relationship between designer and the AI?

• Q9: How did the AI’s decisions affect your creative process?

• Q10: How did the different versions affect your design goals?

• Q11: What do you think is missing or needs to be improved for an AI as the one
of the HIGH-version (with high initiative) to be used in collaborative tools?
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